US009065854B2

a2 United States Patent 10) Patent No.: US 9,065,854 B2
Goyal et al. (45) Date of Patent: Jun. 23, 2015
(54) SYSTEMS AND METHODS FOR MANAGING 2010/0058432 Al* 3/2010 Neystadtetal. 726/1
A GUEST VIRTUAL MACHINE EXECUTING 201 %83;%‘ Al . gggi ! ?I_lderson etal o ;83%‘3‘
TICS ..oevvviinininn
WITHIN A VIRTUALIZED ENVIRONMENT 2013/0042297 Al* 2/2013 Kimetal.cccovrnrrenenn. 726/1
. L 2013/0047160 Al* 2/2013 Conover 718/1
(71) Applicant: Citrix Systems, Inc., Fort Lauderdale, 2013/0227699 Al* 82013 Barak etal. . . 726/26
FL (US) 2013/0290830 Al* 10/2013 Shmulevich 715/234
(72) Inventors: Raghu Goyal, Bangalore (IN); Sanjay OTHER PUBLICATIONS
Gupta, Bangalore (IN); Dave Saurabh,
Bangalore (IN) Kim et al., “Building Secure Execution Environment or Mobile Plat-
form”, 978-0-7695-4417-5/11 IEEE, 2011.*
(73) Assignee: CITRIX SYSTEMS, INC., Fort Liu et al, “High Performance VMM-Bypass /O in Virtual
Lauderdale, FL (US) Machines”, Annual Tech 06 USENIX Annual Technical Conference
2006.*
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 52 days.
(21) Appl. No.: 14/065,161 Primary Examiner — Peter Poltorak
(74) Attorney, Agent, or Firm — Foley & Lardner LLP;
(22) Filed: Oct. 28, 2013 Christopher J. McKenna; Shabbi S. Khan
(65) Prior Publication Data
US 2015/0121061 Al Apr. 30, 2015 7 ABSTRACT
The present disclosure relates to methods and systems for
(31) Int.Cl managing a guest virtual machine executing within a virtual-
HO4L 29/06 (2006.01) ized environment. A daemon is established on a guest virtual
GOGF 9/00 (2006.01) machine executing within a virtualized environment. The
GO6F 97455 (2006.01) daemon is configured to communicate with a management
(52) US.ClL service virtual machine executing within the virtualized envi-
CPC e, HO4L 63/168 (2013.01); GOGF 9/00 ronment. The daemon receives, from the management service
(2013.01); GO6F 9/455 (2013.01) virtual machine via an application layer protocol, a request
(58) Field of Classification Search identifying an action type of a plurality of predetermined
None o] action types. The daemon identifies the action type of the
See application file for complete search history. plurality of predetermined action types from the received
. request and performs an action corresponding to the identi-
(56) References Cited fied action type. In some implementations, the application

7,962,647 B2 *
2001/0047406 Al* 11/2001 Araujo etal. .

U.S. PATENT DOCUMENTS

6/2011 Surietal.cocovie. 709/238
709/223

2009/0319740 Al* 12/2009 Nishi ..o 711/163

layer protocol is one of Hypertext Transfer Protocol (HTTP)
or Hypertext Transfer Protocol Secure (HTTPS).

17 Claims, 27 Drawing Sheets

Computing Device 1600

Viriust Machine
406f

US 9,065,854 B2

Sheet 1 of 27

Ughl roasg Qw. @mm HZOE weyn

/s -
AN / 0
0 N 0

,/ \\
0 \ / 0

G490} seateg / /
\ £
PRV S osueddy el \ N

Jun. 23, 2015

{k/

- L} Pt -
» 5B @ i N gromen Dammmmnd ET T—T] wa p D,
AOMIB
\ 80z HOMIIN
P

U.S. Patent

J
7 NS g
2OQL Jssseg / /
/ /
\\
/ N
L= = = S K A
///\\\ -
8%

US 9,065,854 B2

Sheet 2 of 27

ugnL senes S5 S uZOL e

BNEA
mX/ .
— N,
e =
X 03))

<>
T
—
)

4 o
T
-
T
\\
C [

G901 seaseg / /
\ qzeL ued

asuegddy soueyddy

Jun. 23, 2015

\Jn)/.
0L
oD ooo o A..wv.%&uﬁﬁwz;m _m”..

= M
8o oo r\f%(
st

[1

| R i

/

2401 temeg \
H

U.S. Patent

|
K\ 2Z01 Wand
T !
L
AV e
B

US 9,065,854 B2

Sheet 3 of 27

Jun. 23, 2015

U.S. Patent

uggL seassg Ji "9id UzgE wend
%ﬁ&
S
2zos N
i — Lide
% L)
03 /0
0 / \\ 0
I ~
Q / {aoinep {ao18ap \ U
490L sonissg / uonezZEUndG uspeTEO /
/x N NV \\ gzoL Hueny
) sourtjddy sourpjdady e, sauelddy ¥*
< VJ) o~ .
mm P} S
o5 oooa /'\/\Wh(
\
eg0L Jonieg \
f
N.\ BZ0L ueiD
\.
oY
8

US 9,065,854 B2

Sheet 4 of 27

Jun. 23, 2015

U.S. Patent

01 Jonieg

Yo@i isausg

GHL SHAIDS
Buriopuow
sousuLIoMed

I8t

wisfe Bugonuow
aouBuLoHEd

G61
subug Aolod

OBL wesAs
Aaanag
uonenddy

S} B1e]

uonesyddy

p

e

413

aik "old

soueddy

HICAGON

o

=

b1l
x."oz.«wz

ZoL WSHD

07| weby wsyD

_ o) BIEQ _

| uopeoyddy |

{ JLSUIUOIIALIT
Buipndwon

U.S. Patent Jun. 23,2015 Sheet 5 of 27 US 9,065,854 B2

100~
A\ 128
N /,
03
Software
//101 //”*122 g’gzgg] ’/f, 123
/ Main
cP Memor Storage
/‘~150
€ ? / >
123~ |
: Display
UO device(s) Installation Network
CTRL T Device interface
126 /N 127 1¥an 116 g
VoS ok
" Pointing
Keyboard Devic

Fig. IE

U.S. Patent Jun. 23,2015 Sheet 6 of 27 US 9,065,854 B2

— 401
/*”140
Main '
Processor Cache
_________________ Y
VO | 1O | Memory Main
Port Port| Port Memory 1308
N\ /
—~ 403 1O
Device
Bridgel 170
150
e
& / -
o Pl
o {130a
/O
Device

Fig. IF

U.S. Patent Jun. 23, 2015

Sheet 7 of 27 US 9,065,854 B2

101

PPU

P1

P2

P3

Fi

101

cPuU

0T

GPU

US 9,065,854 B2

Sheet 8 of 27

Jun. 23, 2015

vZ "Old 52
_J
_— _— oy | GRE
98¢ sMO0d 1214 AT 282 108582044 H _—
RICMIBN fArowsy JOSSBI0I || JOSSADOI | uondAioug m 4
W ...:.\m...;“ Mw.\:w;ﬁ.hmwx
192 4RI P
NIOMISN ¥
3 yee aubBug
" \\q uondiiouy
£¥Z s04nq THT JmuLy .e\\
ipZ suibug 19voed pajeibiajug T
- - T —
i-2 1afer] paadg-ybiy e oes 507
P T e EIIEN aoeds
p— / T A %A oDy
8eed / . ioBeuep
uoissaidwiog hk———> oubuz - 3
Asyjo HIED
102030101 iod
817 sasimie A ShE
IALBS UOoWDRY] WSISAG 557
— — p— — d
BULIOHUGH WI[eoH s33ALBG fIBYSg o ng

U.S. Patent

US 9,065,854 B2

Sheet 9 of 27

Jun. 23, 2015

U.S. Patent

Ug0L JoAleg

UQ.Z SIS

507 Jenisg

QL 8liney

BGOL J0AI0%

BOLT S0IMISSG

\

g¢ "9id

00Z soueyddy

/ ~7 TN

~

soL)
HIOMIBN &i..
vﬁ(\%lklf\

81
wabe Buncuow

068 A4 ddy

a7 UOREIBBIDY

982 SNG

PRz Buoums

Z8C di Isueiy

087 NdA 1ES

UG /7 \ IBAIBTRA

BG /7 Y BAIBGA

UMZOL NG

uozi
el weyn

RIAT UL)

G0E 1L
wiehy BN

BZ0L SND

20Z)
waby wslD

U.S. Patent Jun. 23,2015 Sheet 10 of 27 US 9,065,854 B2

Client 102

user mods 303

13t Program
App 1 App 2 322
App N
Y A4 ¥
310a

monitoring
agent/script 197

Network Streaming Client
Stack 306
310 ;
Bo Cellection Agent o
304
APl data
struciure 325 Acceleration
Program 302
interceptor
350

Client Agent 120

Kerngl mode 302

U.S. Patent

Jun. 23, 2015

Sheet 11 of 27

devi

US 9,065,854 B2

ce 100

virtualized environment 400

VIRTUALIZATION LAYER

Virtual Machioe 406a

Virtual Machine 406b

Virtual Machine 406¢

Control G
Operating suest
gystemb Operating] GUC$
405 System Operating
) Sysiem
. N 4103
Iﬂofﬂ?&d‘ 410b
N r
[\ / \ , \
b N N
P Virtsal 1L Viggal ; | Virtual U1 Virtual il Virtual f ¢ Virtual
| Disk poopy | Disk Liopu Gl Disk 1) CPUL
' 442a 14320 1|1 442b IR S | HE S P432e
1)
HYPERVISOR LAYER %
- &
Hypervisor 401
m,.“,w,-.“,_m,_.“m.m._,_m,_.‘;ﬁ ...
HARDWARE LAYER 'L

Physical Disk{s) 428

Physical CPU(s) 421

Fig. 44

U.S. Patent

Jun. 23, 2015 Sheet 12 of 27 US 9,065,854 B2

Computing Device 100a Computing Deviee 100b
Virtual Virtual Virtual Virtual
Machine Machine Machine Machine
4063 406b 406¢ 4064

Control (8 Guest Control Cuest
403a Operating P . 08 405b Operating
Management Svstem h " Mgmt System
componert 4103 component 410b
404g i 404a i
& ¢ Virtual P Virtual
¥ i Resources ! 4 i Resources
Hypervisor | 1 432q, 4422 | Hypervisor " A 432b, 442b ¢
4G1a B 401h frmmmmmmmemees
B 3
ki 4
Physical Resources Physical Resources
42Z1a, 4282 421h, 428b
*\ /
\ /
Y ¥

Computing Device 100c

Virtual Machine 4502

Virtual Machine

4061
Guest Operating System 410¢
2
_______________ Ve Control OGS
! L}
P Virtual Resources 432¢, 442¢ 405¢
""""""““; """""""""" ! Management
X companent
/// 404a
Hypervisor 401 o7

Fig. 4

U.S. Patent

Iintranet 1P 282

Swilching 284

DNS 286

Accaleration 288

App FW 280

monitoring agent
187

Jun. 23, 2015 Sheet 13 of 27
virfualized application delivery controlier 450
vServer AZ/5a v3erver A 275a
vaerver AZ75n vServer A 275n
SSL VPN 280 SSL VPN 280

intranet |P 282

Switching 284

DNS 286

Acceleration 288

App FW 290

monitoring agent
197

virtualized environment 400

computing device 100

Fig. 4C

US 9,065,854 B2

U.S. Patent Jun. 23,2015 Sheet 14 of 27 US 9,065,854 B2

_____________ Functional
é 51 ()(j,g Paralielism 500
SR 3 L g : e
e SSL g bavnnsmanesd
Core 1 Coare2 § Core3 | Cored | Cores | Cores | Core?7 Core N
S05A 5058 SO5C 565D 505k SG5F SU5G ver 505N

Data
Parallelsm

540

............ FTTRaC :

ITTUEATA : :

A N - E . HYS o «
9 v '*‘mg Vi PONICE § PoNIcz |

- P VIPZ H poTemnesnes H : : gy

Corel § Core2 | Cored | Cored | Core5 | Coret | Core?7 Core M

D a8
SO5A 5058 505C 505D 505K 505F 505G SO5N

Flovw-Based Data
Parallelisin _ 520

/

........................

crormonaowonsonas

535 ¢

Cora 1 Core2 § Core3 | Cored | Cores § Tore6 | Core? Core N
E 2N 2 -]

SO5A 5058 5050 50513 505E SO5F 505G SO5N

Fig. 54

US 9,065,854 B2

U.S. Patent Jun. 23,2015 Sheet 15 of 27
/ 545
S48A 3488 548N
Packet Packet Packet
Enging A Engine & e ¢ ¢ Engine N
& A A
k4 ¥ k4
Memary Bus 556
A A
ki v
Corel § Core2 § Come3 § Cored | Coresd | Core | Core 7 Core N
[> > IR V]
SOSA 3058 SO5C 505D SOSE 505F 503G 505N
A
A4
Flow Distribuior 550
B
MIC 552

US 9,065,854 B2

Sheet 16 of 27

Jun. 23, 2015

U.S. Patent

J% "9l

.
| JAS] I

BEG ouPeD [Bq0lS) W
NGOG 0o o D806 4508 4206 geos o505 gs0g vG0% I
(9100 jonuoo} |
NBIOT JEY%) 08107 gaI0n) $2100 08107 79100 L2100 |
{
i i
i SUBI w
w ouoD
\\\M\‘A | R e..m

oA

US 9,065,854 B2

Sheet 17 of 27

Jun. 23, 2015

U.S. Patent

800 J9I8RH

soepay T)

NIOMION

ﬁ,\{/\,\ \
P \

auBld mama JeAIBg

g "oOld

HEY
2180140 aoueyddy

209
auwld yorg

YR
0} /M
p LTI ETY J

T

US 9,065,854 B2

Sheet 18 of 27

Jun. 23, 2015

U.S. Patent

Vi9ld
18he JosinaadAy
L 08 JosasdAH

— — 904
cel ccl uonesyddy

S80IAIES SASIAISS
¥Zi yZl = YOI SO

SSUHAN SSHNN o0l SO SO 048U0D
i i

sydus syduo i
Gl 77 a0IABQ !
8071 o7
027 G571

uouise(uowerg
Q014 2014

BUIYOBHY [BNLIA SUIJOBIN [BNIIA joke" UORBZIRNLIA

0% JUSLWUCHAUS DOZIENIIA

7
00E/00L ™

US 9,065,854 B2

Sheet 19 of 27

Jun. 23, 2015

U.S. Patent

84 '9id

10as6p1004]

US 9,065,854 B2

Sheet 20 of 27

Jun. 23, 2015

U.S. Patent

24914

29%¢

IET L o43e-Bingr/sadiins oMU /B LiuodsAs/Die/

£OREASAPPIBL~TLG¥-414 /L -0040-0P090G4 S = QINN

LOMES WaRsAs,, = FWUN

OU = LTNI9AJT

SPA = IRINATRETEY S AD T
" S9A = FLA0EIIO

7 07§577652° 957 = MSYWLIN

h/ T TE Z0T 0T = AVMILYD

7EZTETZOTIOT = wOOvVdI
T awou - oiougicer”]

ISUIIYIT = AdAL

LS8k, = 1008KO

58K = AITIOYLNOD THN

LOHLR, = 30TAIG

)

Oyie

-Boj1/s1d1I0s-yiomlau/bljuoosAs/oe/ Bunipe
Aq a|qeyoeay 3}IomjaN gS9-XINS aXelN -

US 9,065,854 B2

Sheet 21 of 27

Jun. 23, 2015

U.S. Patent

QL '9ld

s i

2

bt

&
P

BT

wagdn swsag smogemn | ofenmay | ouy

e e e Y RN TR T R E VR

AACIRG USS10S Jad B8 I MOUS [J2ILUSNUSY PaljBISL 10U SI Sj00 1 USY J|
pelRISUl APESIIR JOU JI INA 1S8NS) 8Ul U S[O0LUSY [|81Sy

R I R AT S S L IR

:MOIBg sUd81s MOJI0

US 9,065,854 B2

Sheet 22 of 27

Jun. 23, 2015

U.S. Patent

UGHEJ0] Si] O} jjeq Je] S|OCOIXPS d145/d0S -
‘S|OOIXPS
10} Alo)osuip 818810 puB ‘WA 9S9-XINS 01 Alindg -

US 9,065,854 B2

Sheet 23 of 27

Jun. 23, 2015

U.S. Patent

44 "Old

x\h..nx.i.q......x......x.”..s..&...ﬂ
.\..«, I o e S £y
JRDAEELEOE D F TN

wxsatad sy uTNTes

Lot denied

"UCWUBER BUl LEIS PUE ‘UCHEDIUNWIWIOD Sdily J0) 18D |SS JINRIOPD S1BaID 0S| M US |BISU] »
(INAISONS) OF SIEL 1M NAS UOIUM UO Hod) <od sdiys ysesut .

AEsul/” pog .
jeq Jey syl 1oBIaXg .

US 9,065,854 B2

Sheet 24 of 27

Jun. 23, 2015

U.S. Patent

0L °0ld

m tivreysur 1oueld
ITERE ${TTRISUT 108824300

Ny
i
€1

g beed oot

kot

¥7 ¢iTrRseut

Toaelaanosl
TIRASUT/ETOOIEDE /HTIATS /a80/I8s/
pad fiTTEssut ousbfscox:

‘Aloosap
Siduos wiosng, Ul psoejd 8g pinoys UusppLLIsAC ag 0} spaau ey} siduog

US 9,065,854 B2

Sheet 25 of 27

Jun. 23, 2015

U.S. Patent

i

B3Ry 40D

EIAIIE PR, IS

HL "Oid

sarpadaly

g & ey

S{00{ XIS Yum Apesi 8q pinoys YAX psuodxs
"8y YAX € se ajejdiue) o) Lodx3

oejduis] Ol Il LIBALGD

JBIUBOUDY DL NA BYI UMOPINYS

UBD NOA ‘Jysse00ns ale sdeys snoinasd aul e §i

US 9,065,854 B2

Sheet 26 of 27

Jun. 23, 2015

U.S. Patent

14 "Old

BUINBG

10100, 9L MOJIB A, B9 [lIat B1EIS S0UBISU|, ‘BUIpUOdSal JoU SI UOWSEP NG 'PSIIEISUI SI SI00 L X (IS i
"SSIMISLIC Pal DUB ‘WA 1S8NS &) UC PBIRISUl Bi SI00) XS i Ueasl, ag [jim LLUNOS SIC0L NS

"I} B4} Ui 80UBISUI S D-YINS UBo auo ‘Buucisiacid JNISSe00Ns UD

A
daig Ul pejeatn seitus | WAX Buisn eniaeg uswebeuspy Lo 8oURISH gSO-YIAS 84l usisiaoid Ued suQ

US 9,065,854 B2

Sheet 27 of 27

Jun. 23, 2015

U.S. Patent

L '9id
< adAy uonoe
GG/ doig > paLUSp 8y ¢} BUIpUodssDD UOHDR UB LWIOLS
A
ﬁ\
g6l doys 159nbel Sdl 1 H oyl wol adAy uoyoe auy Apuep
&
s/ daig w adA} uonor ue Buifyguept 1senbal SdlLH UE sABDay
&
f
ops daig SUIYOBU JENWIA 180NnD B U0 UDWBED B USHUEIST

US 9,065,854 B2

1
SYSTEMS AND METHODS FOR MANAGING
A GUEST VIRTUAL MACHINE EXECUTING
WITHIN A VIRTUALIZED ENVIRONMENT

FIELD

The present application generally relates to managing a
guest virtual machine. In particular, the present application
relates to systems and methods for managing a guest virtual
machine via a management service virtual machine executing
within a virtualized environment.

BACKGROUND

In conventional computing environments implementing a
hypervisor to execute a virtual machine on a host computing
device, the hypervisor can communicate with the virtual
machine via a management service virtual machine. At
present, the ability of the management service virtual
machine to perform various functions related to the virtual
machine is limited.

BRIEF SUMMARY

The systems and methods of the present solution are
directed to methods and systems for managing a guest virtual
machine executing within a virtualized environment. A dae-
mon can be deployed in the guest virtual machine that is
configured to communicate with a management service vir-
tual machine. The daemon can be configured to receive
requests from the management service virtual machine, iden-
tify action types included within the requests and perform
actions that correspond to the identified action types. The
actions can correspond to initializing network configurations,
providing statistics of the guest virtual machine to the man-
agement service virtual machine, upgrading software, over-
riding existing scripts, receiving files, amongst others.

Through the deployment of the daemon, the guest virtual
machine can communicate more effectively with the manage-
ment service virtual machine. As a result, the daemon can
facilitate the onboarding of the guest virtual machine on the
device or appliance. The daemon can also perform certain
functions without the need for the guest virtual machine to be
accessed through an administrator’s credentials. Moreover,
the daemon can facilitate the upload and download of files by
the guest virtual machine using protocols other than the
secure copy (SCP) or the Secure File Transfer Protocol
(SFTP). The daemon can be managed by the management
service virtual machine without being dependent on the
release cycles of the guest machine on which the daemon is
executing. The daemon can further provide the management
service virtual machine the ability to manage network-related
configurations for the guest virtual machine, upgrade soft-
ware executing on the virtual machine, manage backup or
restore configurations, generate technical support, receive
performance statistics (for example, CPU and memory utili-
zation, amongst others), receive inventory details (for
example, version and model numbers of devices and compo-
nents), and also manage the initial configuration of the guest
virtual machine and manage or set licenses in the guest virtual
machine.

In some aspects, the present solution is directed towards a
method for managing a guest virtual machine executing
within a virtualized environment. A daemon is established on
a guest virtual machine executing within a virtualized envi-
ronment. The daemon is configured to communicate with a
management service virtual machine executing within the

10

15

20

25

30

35

40

45

50

55

60

65

2

virtualized environment. The daemon receives, from the man-
agement service virtual machine via an application layer pro-
tocol, a request identifying an action type of a plurality of
predetermined action types. The daemon identifies the action
type of the plurality of predetermined action types from the
received request and performs an action corresponding to the
identified action type. In some implementations, the applica-
tion layer protocol is one of Hypertext Transfer Protocol
(HTTP) or Hypertext Transfer Protocol Secure (HTTPS).

In some implementations, establishing the daemon on the
guest virtual machine includes deploying a file corresponding
to the daemon, configuring a port of the guest virtual machine
via which the management service virtual machine is to com-
municate with the daemon and creating a default security
certificate for receiving requests. In some implementations,
the daemon can determine that the request is received from
the management service virtual machine.

In some implementations, the received request includes a
payload having a portion in JavaScript Object Notation
(JSON) format. In some implementations, the request iden-
tifies one of a initialize network request, a get statistics
request, an image upgrade request or a do technical support
request. In some implementations, the request includes an
image file and a predetermined instruction corresponding to
an image upgrade request to upgrade to the image file
included in the received request. In some implementations,
the request includes instructions to execute a script corre-
sponding to an action of the plurality of predetermined action
types.

In some implementations, the daemon performs an action
corresponding to the identified action type by calling a script
file corresponding to the action type identified by the request
and passing parameters included in the request to the script
file. In some implementations, the daemon parses an output of
the script, generates a response and provides the generated
response to the management service virtual machine. In some
implementations, the daemon maintains a log to facilitate
debugging.

In some aspects, a system for managing a guest virtual
machine executing within a virtualized environment includes
a guest virtual machine executing within a virtualized envi-
ronment and a daemon configured to execute on the guest
virtual machine and communicate with a management ser-
vice virtual machine executing within the virtualized envi-
ronment. The daemon can receive, from the management
service virtual machine via an application layer protocol, a
request identifying an action type of a plurality of predeter-
mined action types. The daemon can identify, from the
received request, the action type of the plurality of predeter-
mined action types and perform an action corresponding to
the identified action type. In some implementations, the
application layer protocol is one of HTTP or HTTPS.

In some implementations, establishing the daemon on the
guest virtual machine includes deploying a file corresponding
to the daemon, configuring a port of the guest virtual machine
via which the management service virtual machine is to com-
municate with the daemon and creating a default security
certificate for receiving requests. In some implementations,
the daemon can determine that the request is received from
the management service virtual machine.

In some implementations, the received request includes a
payload having a portion in JSON format. In some implemen-
tations, the request identifies one of an initialize network
request, a get statistics request, an image upgrade request or a
do technical support request. In some implementations, the
request includes an image file and a predetermined instruc-
tion corresponding to an image upgrade request to upgrade to

US 9,065,854 B2

3

the image file included in the received request. In some imple-
mentations, the request includes instructions to execute a
script corresponding to an action of the plurality of predeter-
mined action types.

In some implementations, the daemon performs an action
corresponding to the identified action type by calling a script
file corresponding to the action type identified by the request
and passing parameters included in the request to the script
file. In some implementations, the daemon parses an output of
the script, generates a response and provides the generated
response to the management service virtual machine. In some
implementations, the daemon maintains a log to facilitate
debugging.

The details of various embodiments of the invention are set
forth in the accompanying drawings and the description
below.

BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other objects, aspects, features, and
advantages of the invention will become more apparent and
better understood by referring to the following description
taken in conjunction with the accompanying drawings, in
which:

FIG. 1A is a block diagram of an embodiment of a network
environment for a client to access a server via an appliance;

FIG. 1B is a block diagram of an embodiment of an envi-
ronment for delivering a computing environment from a
server to a client via an appliance;

FIG. 1C is a block diagram of another embodiment of an
environment for delivering a computing environment from a
server to a client via an appliance;

FIG. 1D is a block diagram of another embodiment of an
environment for delivering a computing environment from a
server to a client via an appliance;

FIGS. 1E-1H are block diagrams of embodiments of a
computing device;

FIG. 2A is a block diagram of an embodiment of an appli-
ance for processing communications between a client and a
server;

FIG. 2B is a block diagram of another embodiment of an
appliance for optimizing, accelerating, load-balancing and
routing communications between a client and a server;

FIG. 3 is a block diagram of an embodiment of a client for
communicating with a server via the appliance;

FIG. 4A is a block diagram of an embodiment of a virtu-
alization environment;

FIG. 4B is a block diagram of another embodiment of a
virtualization environment;

FIG. 4C is a block diagram of an embodiment of a virtu-
alized appliance;

FIG. 5A are block diagrams of embodiments of approaches
to implementing parallelism in a multi-core system;

FIG. 5B is a block diagram of an embodiment of a system
utilizing a multi-core system;

FIG. 5C is a block diagram of another embodiment of an
aspect of a multi-core system;

FIG. 6 is a block diagram of an embodiment of a cluster
system,

FIG. 7A is a block diagram of an embodiment of a system
for managing a guest virtual machine executing within a
virtualized environment;

FIGS. 7B-71 are a series of illustrations depicting a process
for deploying the daemon on the guest virtual machine and

FIG. 7]is a flow diagram of an embodiment of a method for
managing a guest virtual machine executing within a virtual-
ized environment.

15

30

35

40

45

50

55

4

The features and advantages of the present invention will
become more apparent from the detailed description set forth
below when taken in conjunction with the drawings, in which
like reference characters identify corresponding elements
throughout. In the drawings, like reference numbers gener-
ally indicate identical, functionally similar, and/or structur-
ally similar elements.

DETAILED DESCRIPTION

For purposes of reading the description of the various
embodiments below, the following descriptions of the sec-
tions of the specification and their respective contents may be
helpful:

Section A describes a network environment and computing
environment which may be useful for practicing
embodiments described herein;

Section B describes embodiments of systems and methods
for delivering a computing environment to a remote
user;

Section C describes embodiments of systems and methods
for accelerating communications between a client and a
server;

Section D describes embodiments of systems and methods
for virtualizing an application delivery controller;

Section E describes embodiments of systems and methods
for providing a multi-core architecture and environment;

Section F describes embodiments of systems and methods
for providing a clustered appliance architecture environ-
ment; and

Section G describes embodiments of systems and methods
for managing a virtual machine executing within a vir-
tualized environment.

A. Network and Computing Environment

Prior to discussing the specifics of embodiments of the
systems and methods of an appliance and/or client, it may be
helpful to discuss the network and computing environments
in which such embodiments may be deployed. Referring now
to FIG. 1A, an embodiment of a network environment is
depicted. In brief overview, the network environment com-
prises one or more clients 102a-102z (also generally referred
to as local machine(s) 102, or client(s) 102) in communica-
tion with one or more servers 106a-106n (also generally
referred to as server(s) 106, or remote machine(s) 106) via
one or more networks 104, 104' (generally referred to as
network 104). In some embodiments, a client 102 communi-
cates with a server 106 via an appliance 200.

Although FIG. 1A shows a network 104 and a network 104'
between the clients 102 and the servers 106, the clients 102
and the servers 106 may be on the same network 104. The
networks 104 and 104' can be the same type of network or
different types of networks. The network 104 and/or the net-
work 104' can be a local-area network (LAN), such as a
company Intranet, a metropolitan area network (MAN), or a
wide area network (WAN), such as the Internet or the World
Wide Web. In one embodiment, network 104' may be a private
network and network 104 may be a public network. In some
embodiments, network 104 may be a private network and
network 104" a public network. In another embodiment, net-
works 104 and 104' may both be private networks. In some
embodiments, clients 102 may be located at a branch office of
a corporate enterprise communicating viaa WAN connection
over the network 104 to the servers 106 located at a corporate
data center.

The network 104 and/or 104' be any type and/or form of
network and may include any of the following: a point to point
network, a broadcast network, a wide area network, a local

US 9,065,854 B2

5

area network, a telecommunications network, a data commu-
nication network, a computer network, an ATM (Asynchro-
nous Transfer Mode) network, a SONET (Synchronous Opti-
cal Network) network, a SDH (Synchronous Digital
Hierarchy) network, a wireless network and a wireline net-
work. In some embodiments, the network 104 may comprise
a wireless link, such as an infrared channel or satellite band.
The topology of the network 104 and/or 104' may be a bus,
star, or ring network topology. The network 104 and/or 104'
and network topology may be of any such network or network
topology as known to those ordinarily skilled in the art
capable of supporting the operations described herein.

As shownin FIG. 1A, the appliance 200, which also may be
referred to as an interface unit 200 or gateway 200, is shown
between the networks 104 and 104'. In some embodiments,
the appliance 200 may be located on network 104. For
example, a branch office of a corporate enterprise may deploy
an appliance 200 at the branch office. In other embodiments,
the appliance 200 may be located on network 104'. For
example, an appliance 200 may be located at a corporate data
center. In yet another embodiment, a plurality of appliances
200 may be deployed on network 104. In some embodiments,
a plurality of appliances 200 may be deployed on network
104'. In one embodiment, a first appliance 200 communicates
with a second appliance 200'. In other embodiments, the
appliance 200 could be a part of any client 102 or server 106
on the same or different network 104,104 as the client 102.
One or more appliances 200 may be located at any point in the
network or network communications path between a client
102 and a server 106.

In some embodiments, the appliance 200 comprises any of
the network devices manufactured by Citrix Systems, Inc. of
Ft. Lauderdale Fla., referred to as Citrix NetScaler devices. In
other embodiments, the appliance 200 includes any of the
product embodiments referred to as WebAccelerator and
BigIP manufactured by F5 Networks, Inc. of Seattle, Wash. In
another embodiment, the appliance 205 includes any of the
DX acceleration device platforms and/or the SSI. VPN series
of devices, such as SA 700, SA 2000, SA 4000, and SA 6000
devices manufactured by Juniper Networks, Inc. of Sunny-
vale, Calif. In yet another embodiment, the appliance 200
includes any application acceleration and/or security related
appliances and/or software manufactured by Cisco Systems,
Inc. of San Jose, Calif., such as the Cisco ACE Application
Control Engine Module service software and network mod-
ules, and Cisco AVS Series Application Velocity System.

In one embodiment, the system may include multiple, logi-
cally-grouped servers 106. In these embodiments, the logical
group of servers may be referred to as a server farm 38. In
some of these embodiments, the serves 106 may be geo-
graphically dispersed. In some cases, a farm 38 may be
administered as a single entity. In other embodiments, the
server farm 38 comprises a plurality of server farms 38. Inone
embodiment, the server farm executes one or more applica-
tions on behalf of one or more clients 102.

The servers 106 within each farm 38 can be heterogeneous.
One or more of the servers 106 can operate according to one
type of operating system platform (e.g., WINDOWS NT,
manufactured by Microsoft Corp. of Redmond, Wash.), while
one or more of the other servers 106 can operate on according
to another type of operating system platform (e.g., Unix or
Linux). The servers 106 of each farm 38 do not need to be
physically proximate to another server 106 in the same farm
38. Thus, the group of servers 106 logically grouped as a farm
38 may be interconnected using a wide-area network (WAN)
connection or medium-area network (MAN) connection. For
example, a farm 38 may include servers 106 physically

25

30

40

45

50

55

6

located in different continents or different regions of a conti-
nent, country, state, city, campus, or room. Data transmission
speeds between servers 106 in the farm 38 can be increased if
the servers 106 are connected using a local-area network
(LAN) connection or some form of direct connection.

Servers 106 may be referred to as a file server, application
server, web server, proxy server, or gateway server. In some
embodiments, a server 106 may have the capacity to function
as either an application server or as a master application
server. In one embodiment, a server 106 may include an
Active Directory. The clients 102 may also be referred to as
client nodes or endpoints. In some embodiments, a client 102
has the capacity to function as both a client node seeking
access to applications on a server and as an application server
providing access to hosted applications for other clients
102a-102n.

In some embodiments, a client 102 communicates with a
server 106. In one embodiment, the client 102 communicates
directly with one of the servers 106 in a farm 38. In another
embodiment, the client 102 executes a program neighbor-
hood application to communicate with a server 106 in a farm
38. In still another embodiment, the server 106 provides the
functionality of a master node. In some embodiments, the
client 102 communicates with the server 106 in the farm 38
through a network 104. Over the network 104, the client 102
can, for example, request execution of various applications
hosted by the servers 106a-1067 in the farm 38 and receive
output of the results of the application execution for display.
In some embodiments, only the master node provides the
functionality required to identify and provide address infor-
mation associated with a server 106' hosting a requested
application.

In one embodiment, the server 106 provides functionality
of a web server. In another embodiment, the server 106a
receives requests from the client 102, forwards the requests to
asecond server 1065 and responds to the request by the client
102 with a response to the request from the server 1065. In
still another embodiment, the server 106 acquires an enu-
meration of applications available to the client 102 and
address information associated with a server 106 hosting an
application identified by the enumeration of applications. In
yet another embodiment, the server 106 presents the response
to the request to the client 102 using a web interface. In one
embodiment, the client 102 communicates directly with the
server 106 to access the identified application. In another
embodiment, the client 102 receives application output data,
such as display data, generated by an execution of the iden-
tified application on the server 106.

Referring now to FIG. 1B, an embodiment of a network
environment deploying multiple appliances 200 is depicted.
A first appliance 200 may be deployed on a first network 104
and a second appliance 200' on a second network 104'. For
example a corporate enterprise may deploy a first appliance
200 at a branch office and a second appliance 200" at a data
center. In another embodiment, the first appliance 200 and
second appliance 200" are deployed on the same network 104
or network 104. For example, a first appliance 200 may be
deployed for a first server farm 38, and a second appliance
200 may be deployed for a second server farm 38'. In another
example, a first appliance 200 may be deployed at a first
branch office while the second appliance 200" is deployed at a
second branch office’. In some embodiments, the first appli-
ance 200 and second appliance 200" work in cooperation or in
conjunction with each other to accelerate network traffic or
the delivery of application and data between a client and a
server

US 9,065,854 B2

7

Referring now to FIG. 1C, another embodiment of a net-
work environment deploying the appliance 200 with one or
more other types of appliances, such as between one or more
WAN optimization appliance 205, 205' is depicted. For
example a first WAN optimization appliance 205 is shown
between networks 104 and 104' and a second WAN optimi-
zation appliance 205' may be deployed between the appliance
200 and one or more servers 106. By way of example, a
corporate enterprise may deploy a first WAN optimization
appliance 205 at a branch office and a second WAN optimi-
zation appliance 205' at a data center. In some embodiments,
the appliance 205 may be located on network 104'. In other
embodiments, the appliance 205' may be located on network
104. In some embodiments, the appliance 205' may be located
on network 104' or network 104". In one embodiment, the
appliance 205 and 205' are on the same network. In another
embodiment, the appliance 205 and 205" are on different
networks. In another example, a first WAN optimization
appliance 205 may be deployed for a first server farm 38 and
a second WAN optimization appliance 205" for a second
server farm 38'

In one embodiment, the appliance 205 is a device for accel-
erating, optimizing or otherwise improving the performance,
operation, or quality of service of any type and form of
network traffic, such as traffic to and/or from a WAN connec-
tion. In some embodiments, the appliance 205 is a perfor-
mance enhancing proxy. In other embodiments, the appliance
205 is any type and form of WAN optimization or acceleration
device, sometimes also referred to as a WAN optimization
controller. In one embodiment, the appliance 205 is any of the
product embodiments referred to as WANScaler manufac-
tured by Citrix Systems, Inc. of Ft. Lauderdale, Fla. In other
embodiments, the appliance 205 includes any of the product
embodiments referred to as BIG-IP link controller and WAN-
jet manufactured by F5 Networks, Inc. of Seattle, Wash. In
another embodiment, the appliance 205 includes any of the
WX and WXC WAN acceleration device platforms manufac-
tured by Juniper Networks, Inc. of Sunnyvale, Calif. In some
embodiments, the appliance 205 includes any of the steelhead
line of WAN optimization appliances manufactured by River-
bed Technology of San Francisco, Calif. In other embodi-
ments, the appliance 205 includes any of the WAN related
devices manufactured by Expand Networks Inc. of Roseland,
N.J. In one embodiment, the appliance 205 includes any of
the WAN related appliances manufactured by Packeteer Inc.
of Cupertino, Calif., such as the PacketShaper, iShared, and
SkyX product embodiments provided by Packeteer. In yet
another embodiment, the appliance 205 includes any WAN
related appliances and/or software manufactured by Cisco
Systems, Inc. of San Jose, Calif., such as the Cisco Wide Area
Network Application Services software and network mod-
ules, and Wide Area Network engine appliances.

In one embodiment, the appliance 205 provides application
and data acceleration services for branch-office or remote
offices. In one embodiment, the appliance 205 includes opti-
mization of Wide Area File Services (WAFS). In another
embodiment, the appliance 205 accelerates the delivery of
files, such as via the Common Internet File System (CIFS)
protocol. In other embodiments, the appliance 205 provides
caching in memory and/or storage to accelerate delivery of
applications and data. In one embodiment, the appliance 205
provides compression of network traffic at any level of the
network stack or at any protocol or network layer. In another
embodiment, the appliance 205 provides transport layer pro-
tocol optimizations, flow control, performance enhancements
or modifications and/or management to accelerate delivery of
applications and data over a WAN connection. For example,

20

30

35

40

45

50

55

60

65

8

in one embodiment, the appliance 205 provides Transport
Control Protocol (TCP) optimizations. In other embodi-
ments, the appliance 205 provides optimizations, flow con-
trol, performance enhancements or modifications and/or
management for any session or application layer protocol.

In another embodiment, the appliance 205 encoded any
type and form of data or information into custom or standard
TCP and/or IP header fields or option fields of network packet
to announce presence, functionality or capability to another
appliance 205'. In another embodiment, an appliance 205'
may communicate with another appliance 205" using data
encoded in both TCP and/or IP header fields or options. For
example, the appliance may use TCP option(s) or IP header
fields or options to communicate one or more parameters to
be used by the appliances 205, 205' in performing function-
ality, such as WAN acceleration, or for working in conjunc-
tion with each other.

In some embodiments, the appliance 200 preserves any of
the information encoded in TCP and/or IP header and/or
option fields communicated between appliances 205 and
205'. For example, the appliance 200 may terminate a trans-
port layer connection traversing the appliance 200, such as a
transport layer connection from between a client and a server
traversing appliances 205 and 205'. In one embodiment, the
appliance 200 identifies and preserves any encoded informa-
tion in a transport layer packet transmitted by a first appliance
205 via a first transport layer connection and communicates a
transport layer packet with the encoded information to a
second appliance 205' via a second transport layer connec-
tion.

Referring now to FIG. 1D, a network environment for
delivering and/or operating a computing environment on a
client 102 is depicted. In some embodiments, a server 106
includes an application delivery system 190 for delivering a
computing environment or an application and/or data file to
one or more clients 102. In brief overview, a client 10 is in
communication with a server 106 via network 104, 104" and
appliance 200. For example, the client 102 may reside in a
remote office of a company, e.g., a branch office, and the
server 106 may reside at a corporate data center. The client
102 comprises a client agent 120, and a computing environ-
ment 15. The computing environment 15 may execute or
operate an application that accesses, processes or uses a data
file. The computing environment 15, application and/or data
file may be delivered via the appliance 200 and/or the server
106.

In some embodiments, the appliance 200 accelerates deliv-
ery of a computing environment 15, or any portion thereof, to
a client 102. In one embodiment, the appliance 200 acceler-
ates the delivery of the computing environment 15 by the
application delivery system 190. For example, the embodi-
ments described herein may be used to accelerate delivery of
a streaming application and data file processable by the appli-
cation from a central corporate data center to a remote user
location, such as a branch office of the company. In another
embodiment, the appliance 200 accelerates transport layer
traffic between a client 102 and a server 106. The appliance
200 may provide acceleration techniques for accelerating any
transport layer payload from a server 106 to a client 102, such
as: 1) transport layer connection pooling, 2) transport layer
connection multiplexing, 3) transport control protocol buft-
ering, 4) compression and 5) caching. In some embodiments,
the appliance 200 provides load balancing of servers 106 in
responding to requests from clients 102. In other embodi-
ments, the appliance 200 acts as a proxy or access server to
provide access to the one or more servers 106. In another
embodiment, the appliance 200 provides a secure virtual pri-

US 9,065,854 B2

9

vate network connection from a first network 104 of the client
102 to the second network 104' of the server 106, such as an
SSL VPN connection. It yet other embodiments, the appli-
ance 200 provides application firewall security, control and
management of the connection and communications between
a client 102 and a server 106.

In some embodiments, the application delivery manage-
ment system 190 provides application delivery techniques to
deliver a computing environment to a desktop of a user,
remote or otherwise, based on a plurality of execution meth-
ods and based on any authentication and authorization poli-
cies applied via a policy engine 195. With these techniques, a
remote user may obtain a computing environment and access
to server stored applications and data files from any network
connected device 100. In one embodiment, the application
delivery system 190 may reside or execute on a server 106. In
another embodiment, the application delivery system 190
may reside or execute on a plurality of servers 106a-106#. In
some embodiments, the application delivery system 190 may
execute in a server farm 38. In one embodiment, the server
106 executing the application delivery system 190 may also
store or provide the application and data file. In another
embodiment, a first set of one or more servers 106 may
execute the application delivery system 190, and a different
server 1067 may store or provide the application and data file.
In some embodiments, each of the application delivery sys-
tem 190, the application, and data file may reside or be located
on different servers. In yet another embodiment, any portion
of'the application delivery system 190 may reside, execute or
be stored on or distributed to the appliance 200, or a plurality
of appliances.

The client 102 may include a computing environment 15
for executing an application that uses or processes a data file.
The client 102 via networks 104, 104' and appliance 200 may
request an application and data file from the server 106. In one
embodiment, the appliance 200 may forward a request from
the client 102 to the server 106. For example, the client 102
may not have the application and data file stored or accessible
locally. In response to the request, the application delivery
system 190 and/or server 106 may deliver the application and
data file to the client 102. For example, in one embodiment,
the server 106 may transmit the application as an application
stream to operate in computing environment 15 on client 102.

In some embodiments, the application delivery system 190
comprises any portion of the Citrix Access Suite™ by Citrix
Systems, Inc., such as the MetaFrame or Citrix Presentation
Server™ and/or any of the Microsoft® Windows Terminal
Services manufactured by the Microsoft Corporation. In one
embodiment, the application delivery system 190 may deliver
one or more applications to clients 102 or users via a remote-
display protocol or otherwise via remote-based or server-
based computing. In another embodiment, the application
delivery system 190 may deliver one or more applications to
clients or users via steaming of the application.

In one embodiment, the application delivery system 190
includes a policy engine 195 for controlling and managing the
access to, selection of application execution methods and the
delivery of applications. In some embodiments, the policy
engine 195 determines the one or more applications a user or
client 102 may access. In another embodiment, the policy
engine 195 determines how the application should be deliv-
ered to the user or client 102, e.g., the method of execution. In
some embodiments, the application delivery system 190 pro-
vides a plurality of delivery techniques from which to select a
method of application execution, such as a server-based com-
puting, streaming or delivering the application locally to the
client 120 for local execution.

5

10

20

25

30

35

40

45

50

55

60

65

10

In one embodiment, a client 102 requests execution of an
application program and the application delivery system 190
comprising a server 106 selects a method of executing the
application program. In some embodiments, the server 106
receives credentials from the client 102. In another embodi-
ment, the server 106 receives a request for an enumeration of
available applications from the client 102. In one embodi-
ment, in response to the request or receipt of credentials, the
application delivery system 190 enumerates a plurality of
application programs available to the client 102. The appli-
cation delivery system 190 receives a request to execute an
enumerated application. The application delivery system 190
selects one of a predetermined number of methods for execut-
ing the enumerated application, for example, responsive to a
policy of a policy engine. The application delivery system
190 may select a method of execution of the application
enabling the client 102 to receive application-output data
generated by execution of the application program on a server
106. The application delivery system 190 may select a
method of execution of the application enabling the local
machine 10 to execute the application program locally after
retrieving a plurality of application files comprising the appli-
cation. In yet another embodiment, the application delivery
system 190 may select a method of execution of the applica-
tion to stream the application via the network 104 to the client
102.

A client 102 may execute, operate or otherwise provide an
application, which can be any type and/or form of software,
program, or executable instructions such as any type and/or
form of web browser, web-based client, client-server appli-
cation, a thin-client computing client, an ActiveX control, or
a Java applet, or any other type and/or form of executable
instructions capable of executing on client 102. In some
embodiments, the application may be a server-based or a
remote-based application executed on behalf of the client 102
on a server 106. In one embodiments the server 106 may
display output to the client 102 using any thin-client or
remote-display protocol, such as the Independent Computing
Architecture (ICA) protocol manufactured by Citrix Sys-
tems, Inc. of Ft. Lauderdale, Fla. or the Remote Desktop
Protocol (RDP) manufactured by the Microsoft Corporation
of Redmond, Wash. The application can use any type of
protocol and it can be, for example, an HTTP client, an FTP
client, an Oscar client, or a Telnet client. In other embodi-
ments, the application comprises any type of software related
to VoIP communications, such as a soft IP telephone. In
further embodiments, the application comprises any applica-
tion related to real-time data communications, such as appli-
cations for streaming video and/or audio.

In some embodiments, the server 106 or a server farm 38
may be running one or more applications, such as an appli-
cation providing a thin-client computing or remote display
presentation application. In one embodiment, the server 106
or server farm 38 executes as an application, any portion of
the Citrix Access Suite™ by Citrix Systems, Inc., such as the
MetaFrame or Citrix Presentation Server™, and/or any of the
Microsoft® Windows Terminal Services manufactured by
the Microsoft Corporation. In one embodiment, the applica-
tion is an ICA client, developed by Citrix Systems, Inc. of
Fort Lauderdale, Fla. In other embodiments, the application
includes a Remote Desktop (RDP) client, developed by
Microsoft Corporation of Redmond, Wash. Also, the server
106 may run an application, which for example, may be an
application server providing email services such as Microsoft
Exchange manufactured by the Microsoft Corporation of
Redmond, Wash., a web or Internet server, or a desktop shar-
ing server, or a collaboration server. In some embodiments,

US 9,065,854 B2

11

any of the applications may comprise any type of hosted
service or products, such as GoToMeeting™ provided by
Citrix Online Division, Inc. of Santa Barbara, California,
WebEx™ provided by WebEx, Inc. of Santa Clara, Calif., or
Microsoft Office Live Meeting provided by Microsoft Cor-
poration of Redmond, Wash.

Still referring to FIG. 1D, an embodiment of the network
environment may include a monitoring server 106A. The
monitoring server 106 A may include any type and form per-
formance monitoring service 198. The performance monitor-
ing service 198 may include monitoring, measurement and/or
management software and/or hardware, including data col-
lection, aggregation, analysis, management and reporting. In
one embodiment, the performance monitoring service 198
includes one or more monitoring agents 197. The monitoring
agent 197 includes any software, hardware or combination
thereof for performing monitoring, measurement and data
collection activities on a device, such as a client 102, server
106 or an appliance 200, 205. In some embodiments, the
monitoring agent 197 includes any type and form of script,
such as Visual Basic script, or Javascript. In one embodiment,
the monitoring agent 197 executes transparently to any appli-
cation and/or user of the device. In some embodiments, the
monitoring agent 197 is installed and operated unobtrusively
to the application or client. In yet another embodiment, the
monitoring agent 197 is installed and operated without any
instrumentation for the application or device.

In some embodiments, the monitoring agent 197 monitors,
measures and collects data on a predetermined frequency. In
other embodiments, the monitoring agent 197 monitors, mea-
sures and collects data based upon detection of any type and
form of event. For example, the monitoring agent 197 may
collect data upon detection of a request for a web page or
receipt of an HTTP response. In another example, the moni-
toring agent 197 may collect data upon detection of any user
input events, such as a mouse click. The monitoring agent 197
may report or provide any monitored, measured or collected
data to the monitoring service 198. In one embodiment, the
monitoring agent 197 transmits information to the monitoring
service 198 according to a schedule or a predetermined fre-
quency. In another embodiment, the monitoring agent 197
transmits information to the monitoring service 198 upon
detection of an event.

In some embodiments, the monitoring service 198 and/or
monitoring agent 197 performs monitoring and performance
measurement of any network resource or network infrastruc-
ture element, such as a client, server, server farm, appliance
200, appliance 205, or network connection. In one embodi-
ment, the monitoring service 198 and/or monitoring agent
197 performs monitoring and performance measurement of
any transport layer connection, such as a TCP or UDP con-
nection. In another embodiment, the monitoring service 198
and/or monitoring agent 197 monitors and measures network
latency. In yet one embodiment, the monitoring service 198
and/or monitoring agent 197 monitors and measures band-
width utilization.

In other embodiments, the monitoring service 198 and/or
monitoring agent 197 monitors and measures end-user
response times. In some embodiments, the monitoring ser-
vice 198 performs monitoring and performance measurement
of an application. In another embodiment, the monitoring
service 198 and/or monitoring agent 197 performs monitor-
ing and performance measurement of any session or connec-
tion to the application. In one embodiment, the monitoring
service 198 and/or monitoring agent 197 monitors and mea-
sures performance of a browser. In another embodiment, the
monitoring service 198 and/or monitoring agent 197 moni-

10

15

20

25

30

35

40

45

50

55

60

65

12

tors and measures performance of HTTP based transactions.
In some embodiments, the monitoring service 198 and/or
monitoring agent 197 monitors and measures performance of
a Voice over IP (VoIP) application or session. In other
embodiments, the monitoring service 198 and/or monitoring
agent 197 monitors and measures performance of a remote
display protocol application, such as an ICA client or RDP
client. In yet another embodiment, the monitoring service 198
and/or monitoring agent 197 monitors and measures perfor-
mance of any type and form of streaming media. In still a
further embodiment, the monitoring service 198 and/or moni-
toring agent 197 monitors and measures performance of a
hosted application or a Software-As-A-Service (SaaS) deliv-
ery model.

In some embodiments, the monitoring service 198 and/or
monitoring agent 197 performs monitoring and performance
measurement of one or more transactions, requests or
responses related to application. In other embodiments, the
monitoring service 198 and/or monitoring agent 197 moni-
tors and measures any portion of an application layer stack,
such as any .NET or J2EE calls. In one embodiment, the
monitoring service 198 and/or monitoring agent 197 moni-
tors and measures database or SQL transactions. In yet
another embodiment, the monitoring service 198 and/or
monitoring agent 197 monitors and measures any method,
function or application programming interface (API) call.

In one embodiment, the monitoring service 198 and/or
monitoring agent 197 performs monitoring and performance
measurement of a delivery of application and/or data from a
server to a client via one or more appliances, such as appli-
ance 200 and/or appliance 205. In some embodiments, the
monitoring service 198 and/or monitoring agent 197 moni-
tors and measures performance of delivery of a virtualized
application. In other embodiments, the monitoring service
198 and/or monitoring agent 197 monitors and measures
performance of delivery of a streaming application. In
another embodiment, the monitoring service 198 and/or
monitoring agent 197 monitors and measures performance of
delivery of a desktop application to a client and/or the execu-
tion of the desktop application on the client. In another
embodiment, the monitoring service 198 and/or monitoring
agent 197 monitors and measures performance of a client/
server application.

In one embodiment, the monitoring service 198 and/or
monitoring agent 197 is designed and constructed to provide
application performance management for the application
delivery system 190. For example, the monitoring service 198
and/or monitoring agent 197 may monitor, measure and man-
age the performance of the delivery of applications via the
Citrix Presentation Server. In this example, the monitoring
service 198 and/or monitoring agent 197 monitors individual
ICA sessions. The monitoring service 198 and/or monitoring
agent 197 may measure the total and per session system
resource usage, as well as application and networking perfor-
mance. The monitoring service 198 and/or monitoring agent
197 may identity the active servers for a given user and/or
user session. In some embodiments, the monitoring service
198 and/or monitoring agent 197 monitors back-end connec-
tions between the application delivery system 190 and an
application and/or database server. The monitoring service
198 and/or monitoring agent 197 may measure network
latency, delay and volume per user-session or ICA session.

In some embodiments, the monitoring service 198 and/or
monitoring agent 197 measures and monitors memory usage
for the application delivery system 190, such as total memory
usage, per user session and/or per process. In other embodi-
ments, the monitoring service 198 and/or monitoring agent

US 9,065,854 B2

13

197 measures and monitors CPU usage the application deliv-
ery system 190, such as total CPU usage, per user session
and/or per process. In another embodiments, the monitoring
service 198 and/or monitoring agent 197 measures and moni-
tors the time required to log-in to an application, a server, or
the application delivery system, such as Citrix Presentation
Server. In one embodiment, the monitoring service 198 and/
or monitoring agent 197 measures and monitors the duration
auser is logged into an application, a server, or the application
delivery system 190. In some embodiments, the monitoring
service 198 and/or monitoring agent 197 measures and moni-
tors active and inactive session counts for an application,
server or application delivery system session. In yet another
embodiment, the monitoring service 198 and/or monitoring
agent 197 measures and monitors user session latency.

In yet further embodiments, the monitoring service 198
and/or monitoring agent 197 measures and monitors mea-
sures and monitors any type and form of server metrics. In one
embodiment, the monitoring service 198 and/or monitoring
agent 197 measures and monitors metrics related to system
memory, CPU usage, and disk storage. In another embodi-
ment, the monitoring service 198 and/or monitoring agent
197 measures and monitors metrics related to page faults,
such as page faults per second. In other embodiments, the
monitoring service 198 and/or monitoring agent 197 mea-
sures and monitors round-trip time metrics. In yet another
embodiment, the monitoring service 198 and/or monitoring
agent 197 measures and monitors metrics related to applica-
tion crashes, errors and/or hangs.

In some embodiments, the monitoring service 198 and
monitoring agent 198 includes any of the product embodi-
ments referred to as EdgeSight manufactured by Citrix Sys-
tems, Inc. of Ft. Lauderdale, Fla. In another embodiment, the
performance monitoring service 198 and/or monitoring agent
198 includes any portion of the product embodiments
referred to as the TrueView product suite manufactured by the
Symphoniq Corporation of Palo Alto, Calif. In one embodi-
ment, the performance monitoring service 198 and/or moni-
toring agent 198 includes any portion of the product embodi-
ments referred to as the Tealeaf CX product suite
manufactured by the Teal.eaf Technology Inc. of San Fran-
cisco, Calif. In other embodiments, the performance moni-
toring service 198 and/or monitoring agent 198 includes any
portion of the business service management products, such as
the BMC Performance Manager and Patrol products, manu-
factured by BMC Software, Inc. of Houston, Tex.

The client 102, server 106, and appliance 200 may be
deployed as and/or executed on any type and form of com-
puting device, such as a computer, network device or appli-
ance capable of communicating on any type and form of
network and performing the operations described herein.
FIGS. 1E and 1F depict block diagrams of a computing device
100 useful for practicing an embodiment of the client 102,
server 106 or appliance 200. As shown in FIGS. 1E and 1F,
each computing device 100 includes a central processing unit
101, and a main memory unit 122. As shown in FIG. 1E, a
computing device 100 may include a visual display device
124, a keyboard 126 and/or a pointing device 127, such as a
mouse. Each computing device 100 may also include addi-
tional optional elements, such as one or more input/output
devices 130a-1306 (generally referred to using reference
numeral 130), and a cache memory 140 in communication
with the central processing unit 101.

The central processing unit 101 is any logic circuitry that
responds to and processes instructions fetched from the main
memory unit 122. In many embodiments, the central process-
ing unit is provided by a microprocessor unit, such as: those

25

30

40

45

14

manufactured by Intel Corporation of Mountain View, Calif’;
those manufactured by Motorola Corporation of Schaum-
burg, Il1.; those manufactured by Transmeta Corporation of
Santa Clara, Calif.; the RS/6000 processor, those manufac-
tured by International Business Machines of White Plains,
N.Y.; or those manufactured by Advanced Micro Devices of
Sunnyvale, Calif. The computing device 100 may be based on
any of these processors, or any other processor capable of
operating as described herein.

Main memory unit 122 may be one or more memory chips
capable of storing data and allowing any storage location to
bedirectly accessed by the microprocessor 101, such as Static
random access memory (SRAM), Burst SRAM or Synch-
Burst SRAM (BSRAM), Dynamic random access memory
(DRAM), Fast Page Mode DRAM (FPM DRAM), Enhanced
DRAM (EDRAM), Extended Data Output RAM (EDO
RAM), Extended Data Output DRAM (EDO DRAM), Burst
Extended Data Output DRAM (BEDO DRAM), Enhanced
DRAM (EDRAM), synchronous DRAM (SDRAM), JEDEC
SRAM, PC100 SDRAM, Double Data Rate SDRAM (DDR
SDRAM), Enhanced SDRAM (ESDRAM), SyncLink
DRAM (SLDRAM), Direct Rambus DRAM (DRDRAM), or
Ferroelectric RAM (FRAM). The main memory 122 may be
based on any of the above described memory chips, or any
other available memory chips capable of operating as
described herein. In the embodiment shown in FIG. 1E, the
processor 101 communicates with main memory 122 via a
system bus 150 (described in more detail below). FIG. 1F
depicts an embodiment of a computing device 100 in which
the processor communicates directly with main memory 122
via a memory port 103. For example, in FIG. 1F the main
memory 122 may be DRDRAM.

FIG. 1F depicts an embodiment in which the main proces-
sor 101 communicates directly with cache memory 140 via a
secondary bus, sometimes referred to as a backside bus. In
other embodiments, the main processor 101 communicates
with cache memory 140 using the system bus 150. Cache
memory 140 typically has a faster response time than main
memory 122 and is typically provided by SRAM, BSRAM, or
EDRAM. In the embodiment shown in FIG. 1F, the processor
101 communicates with various I/O devices 130 via a local
system bus 150. Various busses may be used to connect the
central processing unit 101 to any of the I/O devices 130,
including a VESA VL bus, an ISA bus, an EISA bus, a
MicroChannel Architecture (MCA) bus, a PCI bus, a PCI-X
bus, a PCI-Express bus, or a NuBus. For embodiments in
which the /O device is a video display 124, the processor 101
may use an Advanced Graphics Port (AGP) to communicate
with the display 124. FIG. 1F depicts an embodiment of a
computer 100 in which the main processor 101 communi-
cates directly with /O device 1305 via HyperTransport,
Rapid /O, or InfiniBand. FIG. 1F also depicts an embodiment
in which local busses and direct communication are mixed:
the processor 101 communicates with [/O device 13056 using
a local interconnect bus while communicating with /O
device 1304 directly.

The computing device 100 may support any suitable instal-
lation device 116, such as a floppy disk drive for receiving
floppy disks such as 3.5-inch, 5.25-inch disks or ZIP disks, a
CD-ROM drive, a CD-R/RW drive, a DVD-ROM drive, tape
drives of various formats, USB device, hard-drive or any
other device suitable for installing software and programs
such as any client agent 120, or portion thereof. The comput-
ing device 100 may further comprise a storage device 128,
such as one or more hard disk drives or redundant arrays of
independent disks, for storing an operating system and other
related software, and for storing application software pro-

US 9,065,854 B2

15

grams such as any program related to the client agent 120.
Optionally, any of the installation devices 116 could also be
used as the storage device 128. Additionally, the operating
system and the software can be run from a bootable medium,
for example, a bootable CD, such as KNOPPIX®, a bootable
CD for GNU/Linux that is available as a GNU/Linux distri-
bution from knoppix.net.

Furthermore, the computing device 100 may include a
network interface 118 to interface to a Local Area Network
(LAN), Wide Area Network (WAN) or the Internet through a
variety of connections including, but not limited to, standard
telephone lines, LAN or WAN links (e.g., 802.11, T1, T3, 56
kb, X.25), broadband connections (e.g., ISDN, Frame Relay,
ATM), wireless connections, or some combination of any or
all of the above. The network interface 118 may comprise a
built-in network adapter, network interface card, PCMCIA
network card, card bus network adapter, wireless network
adapter, USB network adapter, modem or any other device
suitable for interfacing the computing device 100 to any type
of network capable of communication and performing the
operations described herein. A wide variety of 1/O devices
130a-1307 may be present in the computing device 100. Input
devices include keyboards, mice, trackpads, trackballs,
microphones, and drawing tablets. Output devices include
video displays, speakers, inkjet printers, laser printers, and
dye-sublimation printers. The 1/O devices 130 may be con-
trolled by an I/O controller 123 as shown in FIG. 1E. The I/O
controller may control one or more /O devices such as a
keyboard 126 and a pointing device 127, e.g., a mouse or
optical pen. Furthermore, an 1/O device may also provide
storage 128 and/or an installation medium 116 for the com-
puting device 100. In still other embodiments, the computing
device 100 may provide USB connections to receive hand-
held USB storage devices such as the USB Flash Drive line of
devices manufactured by Twintech Industry, Inc. of Los
Alamitos, California.

In some embodiments, the computing device 100 may
comprise or be connected to multiple display devices 124a-
124n, which each may be of the same or different type and/or
form. As such, any of the 1/O devices 130a-130% and/or the
1/O controller 123 may comprise any type and/or form of
suitable hardware, software, or combination of hardware and
software to support, enable or provide for the connection and
use of multiple display devices 124a-124r by the computing
device 100. For example, the computing device 100 may
include any type and/or form of video adapter, video card,
driver, and/or library to interface, communicate, connect or
otherwise use the display devices 124a-124x. In one embodi-
ment, a video adapter may comprise multiple connectors to
interface to multiple display devices 124a-124n. In other
embodiments, the computing device 100 may include mul-
tiple video adapters, with each video adapter connected to one
or more of the display devices 124a-124#. In some embodi-
ments, any portion of the operating system of the computing
device 100 may be configured for using multiple displays
124a-124p. In other embodiments, one or more of the display
devices 124a-124n may be provided by one or more other
computing devices, such as computing devices 100a and
1005 connected to the computing device 100, for example,
via a network. These embodiments may include any type of
software designed and constructed to use another computer’s
display device as a second display device 124a for the com-
puting device 100. One ordinarily skilled in the art will rec-
ognize and appreciate the various ways and embodiments that
a computing device 100 may be configured to have multiple
display devices 124a-124n.

15

20

25

30

40

45

16

In further embodiments, an I/0 device 130 may be a bridge
170 between the system bus 150 and an external communi-
cation bus, such as a USB bus, an Apple Desktop Bus, an
RS-232 serial connection, a SCSI bus, a FireWire bus, a
FireWire 800 bus, an Ethernet bus, an AppleTalk bus, a Giga-
bit Ethernet bus, an Asynchronous Transfer Mode bus, a
HIPPI bus, a Super HIPPI bus, a SerialPlus bus, a SCI/LAMP
bus, a FibreChannel bus, or a Serial Attached small computer
system interface bus.

A computing device 100 of the sort depicted in FIGS. 1E
and 1F typically operate under the control of operating sys-
tems, which control scheduling of tasks and access to system
resources. The computing device 100 can be running any
operating system such as any of the versions of the
Microsoft® Windows operating systems, the different
releases ofthe Unix and Linux operating systems, any version
of the Mac OS® for Macintosh computers, any embedded
operating system, any real-time operating system, any open
source operating system, any proprietary operating system,
any operating systems for mobile computing devices, or any
other operating system capable of running on the computing
device and performing the operations described herein. Typi-
cal operating systems include: WINDOWS 3.x, WINDOWS
95, WINDOWS 98, WINDOWS 2000, WINDOWS NT 3.51,
WINDOWS NT 4.0, WINDOWS CE, and WINDOWS XP,
all of which are manufactured by Microsoft Corporation of
Redmond, Wash.; MacOS, manufactured by Apple Computer
of Cupertino, California; OS/2, manufactured by Interna-
tional Business Machines of Armonk, N.Y.; and Linux, a
freely-available operating system distributed by Caldera
Corp. of Salt Lake City, Utah, or any type and/or form of a
Unix operating system, among others.

In other embodiments, the computing device 100 may have
different processors, operating systems, and input devices
consistent with the device. For example, in one embodiment
the computer 100 is a Treo 180, 270, 1060, 600 or 650 smart
phone manufactured by Palm, Inc. In this embodiment, the
Treo smart phone is operated under the control of the PalmOS
operating system and includes a stylus input device as well as
a five-way navigator device. Moreover, the computing device
100 can be any workstation, desktop computer, laptop or
notebook computer, server, handheld computer, mobile tele-
phone, any other computer, or other form of computing or
telecommunications device that is capable of communication
and that has sufficient processor power and memory capacity
to perform the operations described herein.

As shown in FIG. 1G, the computing device 100 may
comprise multiple processors and may provide functionality
for simultaneous execution of instructions or for simulta-
neous execution of one instruction on more than one piece of
data. In some embodiments, the computing device 100 may
comprise a parallel processor with one or more cores. In one
of these embodiments, the computing device 100 is a shared
memory parallel device, with multiple processors and/or mul-
tiple processor cores, accessing all available memory as a
single global address space. In another ofthese embodiments,
the computing device 100 is a distributed memory parallel
device with multiple processors each accessing local memory
only. In still another of these embodiments, the computing
device 100 has both some memory which is shared and some
memory which can only be accessed by particular processors
or subsets of processors. In still even another of these embodi-
ments, the computing device 100, such as a multi-core micro-
processor, combines two or more independent processors into
a single package, often a single integrated circuit (IC). In yet
another of these embodiments, the computing device 100
includes a chip having a CELL. BROADBAND ENGINE

US 9,065,854 B2

17

architecture and including a Power processor element and a
plurality of synergistic processing elements, the Power pro-
cessor element and the plurality of synergistic processing
elements linked together by an internal high speed bus, which
may be referred to as an element interconnect bus.

In some embodiments, the processors provide functional-
ity for execution of a single instruction simultaneously on
multiple pieces of data (SIMD). In other embodiments, the
processors provide functionality for execution of multiple
instructions simultaneously on multiple pieces of data
(MIMD). In still other embodiments, the processor may use
any combination of SIMD and MIMD cores in a single
device.

In some embodiments, the computing device 100 may
comprise a graphics processing unit. In one of these embodi-
ments, depicted in FIG. 1H, the computing device 100
includes at least one central processing unit 101 and at least
one graphics processing unit. In another of these embodi-
ments, the computing device 100 includes at least one parallel
processing unit and at least one graphics processing unit. In
still another of these embodiments, the computing device 100
includes a plurality of processing units of any type, one of the
plurality of processing units comprising a graphics process-
ing unit.

In some embodiments, a first computing device 100a
executes an application on behalf of a user of a client com-
puting device 1005. In other embodiments, a computing
device 1004a executes a virtual machine, which provides an
execution session within which applications execute on
behalf of a user or a client computing devices 1005. In one of
these embodiments, the execution session is a hosted desktop
session. In another of these embodiments, the computing
device 100 executes a terminal services session. The terminal
services session may provide a hosted desktop environment.
In still another of these embodiments, the execution session
provides access to a computing environment, which may
comprise one or more of: an application, a plurality of appli-
cations, a desktop application, and a desktop session in which
one or more applications may execute.

B. Appliance Architecture

FIG. 2A illustrates an example embodiment of the appli-
ance 200. The architecture of the appliance 200 in FIG. 2A is
provided by way of illustration only and is not intended to be
limiting. As shown in FIG. 2, appliance 200 comprises a
hardware layer 206 and a software layer divided into a user
space 202 and a kernel space 204.

Hardware layer 206 provides the hardware elements upon
which programs and services within kernel space 204 and
user space 202 are executed. Hardware layer 206 also pro-
vides the structures and elements which allow programs and
services within kernel space 204 and user space 202 to com-
municate data both internally and externally with respect to
appliance 200. As shown in FIG. 2, the hardware layer 206
includes a processing unit 262 for executing software pro-
grams and services, a memory 264 for storing software and
data, network ports 266 for transmitting and receiving data
over a network, and an encryption processor 260 for perform-
ing functions related to Secure Sockets Layer processing of
data transmitted and received over the network. In some
embodiments, the central processing unit 262 may perform
the functions of the encryption processor 260 in a single
processor. Additionally, the hardware layer 206 may com-
prise multiple processors for each of the processing unit 262
and the encryption processor 260. The processor 262 may
include any of'the processors 101 described above in connec-
tion with FIGS. 1E and 1F. For example, in one embodiment,
the appliance 200 comprises a first processor 262 and a sec-

10

15

20

25

30

35

40

45

50

55

60

65

18

ond processor 262'. In other embodiments, the processor 262
or 262' comprises a multi-core processor.

Although the hardware layer 206 of appliance 200 is gen-
erally illustrated with an encryption processor 260, processor
260 may be a processor for performing functions related to
any encryption protocol, such as the Secure Socket Layer
(SSL) or Transport Layer Security (TLS) protocol. In some
embodiments, the processor 260 may be a general purpose
processor (GPP), and in further embodiments, may have
executable instructions for performing processing of any
security related protocol.

Although the hardware layer 206 of appliance 200 is illus-
trated with certain elements in FIG. 2, the hardware portions
or components of appliance 200 may comprise any type and
form of elements, hardware or software, of a computing
device, such as the computing device 100 illustrated and
discussed herein in conjunction with FIGS. 1E and 1F. In
some embodiments, the appliance 200 may comprise a server,
gateway, router, switch, bridge or other type of computing or
network device, and have any hardware and/or software ele-
ments associated therewith.

The operating system of appliance 200 allocates, manages,
or otherwise segregates the available system memory into
kernel space 204 and user space 204. In example software
architecture 200, the operating system may be any type and/or
form of Unix operating system although the invention is not
so limited. As such, the appliance 200 can be running any
operating system such as any of the versions of the
Microsoft® Windows operating systems, the different
releases ofthe Unix and Linux operating systems, any version
of the Mac OS® for Macintosh computers, any embedded
operating system, any network operating system, any real-
time operating system, any open source operating system, any
proprietary operating system, any operating systems for
mobile computing devices or network devices, or any other
operating system capable of running on the appliance 200 and
performing the operations described herein.

The kernel space 204 is reserved for running the kernel
230, including any device drivers, kernel extensions or other
kernel related software. As known to those skilled in the art,
the kernel 230 is the core of the operating system, and pro-
vides access, control, and management of resources and hard-
ware-related elements of the application 104. In accordance
with an embodiment of the appliance 200, the kernel space
204 also includes a number of network services or processes
working in conjunction with a cache manager 232, sometimes
also referred to as the integrated cache, the benefits of which
are described in detail further herein. Additionally, the
embodiment of the kernel 230 will depend on the embodi-
ment of the operating system installed, configured, or other-
wise used by the device 200.

In one embodiment, the device 200 comprises one network
stack 267, such as a TCP/IP based stack, for communicating
with the client 102 and/or the server 106. In one embodiment,
the network stack 267 is used to communicate with a first
network, such as network 108, and a second network 110. In
some embodiments, the device 200 terminates a first transport
layer connection, such as a TCP connection of a client 102,
and establishes a second transport layer connection to a server
106 for use by the client 102, e.g., the second transport layer
connection is terminated at the appliance 200 and the server
106. The first and second transport layer connections may be
established via a single network stack 267. In other embodi-
ments, the device 200 may comprise multiple network stacks,
for example 267 and 267", and the first transport layer con-
nection may be established or terminated at one network stack
267, and the second transport layer connection on the second

US 9,065,854 B2

19

network stack 267'. For example, one network stack may be
for receiving and transmitting network packet on a first net-
work, and another network stack for receiving and transmit-
ting network packets on a second network. In one embodi-
ment, the network stack 267 comprises a buffer 243 for
queuing one or more network packets for transmission by the
appliance 200.

As shown in FIG. 2, the kernel space 204 includes the cache
manager 232, a high-speed layer 2-7 integrated packet engine
240, an encryption engine 234, apolicy engine 236 and multi-
protocol compression logic 238. Running these components
or processes 232, 240, 234, 236 and 238 in kernel space 204
or kernel mode instead of the user space 202 improves the
performance of each of these components, alone and in com-
bination. Kernel operation means that these components or
processes 232, 240, 234, 236 and 238 run in the core address
space of the operating system of the device 200. For example,
running the encryption engine 234 in kernel mode improves
encryption performance by moving encryption and decryp-
tion operations to the kernel, thereby reducing the number of
transitions between the memory space or a kernel thread in
kernel mode and the memory space or a thread in user mode.
For example, data obtained in kernel mode may not need to be
passed or copied to a process or thread running in user mode,
such as from a kernel level data structure to a user level data
structure. In another aspect, the number of context switches
between kernel mode and user mode are also reduced. Addi-
tionally, synchronization of and communications between
any of the components or processes 232, 240, 235, 236 and
238 can be performed more efficiently in the kernel space
204.

In some embodiments, any portion of the components 232,
240, 234, 236 and 238 may run or operate in the kernel space
204, while other portions of these components 232, 240, 234,
236 and 238 may run or operate in user space 202. In one
embodiment, the appliance 200 uses a kernel-level data struc-
ture providing access to any portion of one or more network
packets, for example, a network packet comprising a request
from a client 102 or a response from a server 106. In some
embodiments, the kernel-level data structure may be obtained
by the packet engine 240 via a transport layer driver interface
or filter to the network stack 267. The kernel-level data struc-
ture may comprise any interface and/or data accessible via the
kernel space 204 related to the network stack 267, network
traffic or packets received or transmitted by the network stack
267. In other embodiments, the kernel-level data structure
may be used by any of the components or processes 232, 240,
234, 236 and 238 to perform the desired operation of the
component or process. In one embodiment, a component 232,
240, 234, 236 and 238 is running in kernel mode 204 when
using the kernel-level data structure, while in another
embodiment, the component 232, 240, 234, 236 and 238 is
running in user mode when using the kernel-level data struc-
ture. In some embodiments, the kernel-level data structure
may be copied or passed to a second kernel-level data struc-
ture, or any desired user-level data structure.

The cache manager 232 may comprise software, hardware
or any combination of software and hardware to provide
cache access, control and management of any type and form
of content, such as objects or dynamically generated objects
served by the originating servers 106. The data, objects or
content processed and stored by the cache manager 232 may
comprise data in any format, such as a markup language, or
communicated via any protocol. In some embodiments, the
cache manager 232 duplicates original data stored elsewhere
or data previously computed, generated or transmitted, in
which the original data may require longer access time to

20

40

45

20

fetch, compute or otherwise obtain relative to reading a cache
memory element. Once the data is stored in the cache memory
element, future use can be made by accessing the cached copy
rather than refetching or recomputing the original data,
thereby reducing the access time. In some embodiments, the
cache memory element may comprise a data object in
memory 264 of device 200. In other embodiments, the cache
memory element may comprise memory having a faster
access time than memory 264. In another embodiment, the
cache memory element may comprise any type and form of
storage element of the device 200, such as a portion of a hard
disk. In some embodiments, the processing unit 262 may
provide cache memory for use by the cache manager 232. In
yet further embodiments, the cache manager 232 may use any
portion and combination of memory, storage, or the process-
ing unit for caching data, objects, and other content.

Furthermore, the cache manager 232 includes any logic,
functions, rules, or operations to perform any embodiments
of the techniques of the appliance 200 described herein. For
example, the cache manager 232 includes logic or function-
ality to invalidate objects based on the expiration of an invali-
dation time period or upon receipt of an invalidation com-
mand from a client 102 or server 106. In some embodiments,
the cache manager 232 may operate as a program, service,
process or task executing in the kernel space 204, and in other
embodiments, in the user space 202. In one embodiment, a
first portion of the cache manager 232 executes in the user
space 202 while a second portion executes in the kernel space
204. In some embodiments, the cache manager 232 can com-
prise any type of general purpose processor (GPP), or any
other type of integrated circuit, such as a Field Programmable
Gate Array (FPGA), Programmable Logic Device (PLD), or
Application Specific Integrated Circuit (ASIC).

The policy engine 236 may include, for example, an intel-
ligent statistical engine or other programmable application
(s). In one embodiment, the policy engine 236 provides a
configuration mechanism to allow a user to identify, specify,
define or configure a caching policy. Policy engine 236, in
some embodiments, also has access to memory to support
data structures such as lookup tables or hash tables to enable
user-selected caching policy decisions. In other embodi-
ments, the policy engine 236 may comprise any logic, rules,
functions or operations to determine and provide access, con-
trol and management of objects, data or content being cached
by the appliance 200 in addition to access, control and man-
agement of security, network traffic, network access, com-
pression or any other function or operation performed by the
appliance 200. Further examples of specific caching policies
are further described herein.

The encryption engine 234 comprises any logic, business
rules, functions or operations for handling the processing of
any security related protocol, such as SSL or TLS, or any
function related thereto. For example, the encryption engine
234 encrypts and decrypts network packets, or any portion
thereof, communicated via the appliance 200. The encryption
engine 234 may also setup or establish SSL or TLS connec-
tions on behalf of the client 102a-102#, server 106a-1061, or
appliance 200. As such, the encryption engine 234 provides
offloading and acceleration of SSL processing. In one
embodiment, the encryption engine 234 uses a tunneling
protocol to provide a virtual private network between a client
1024a-1027 and a server 106a-1067. In some embodiments,
the encryption engine 234 is in communication with the
Encryption processor 260. In other embodiments, the encryp-
tion engine 234 comprises executable instructions running on
the Encryption processor 260.

US 9,065,854 B2

21

The multi-protocol compression engine 238 comprises any
logic, business rules, function or operations for compressing
one or more protocols of a network packet, such as any of the
protocols used by the network stack 267 of the device 200. In
one embodiment, multi-protocol compression engine 238
compresses bi-directionally between clients 102a-102 and
servers 106a-106r any TCP/IP based protocol, including
Messaging Application Programming Interface (MAPI)
(email), File Transfer Protocol (FTP), HyperText Transfer
Protocol (HTTP), Common Internet File System (CIFS) pro-
tocol (file transfer), Independent Computing Architecture
(ICA) protocol, Remote Desktop Protocol (RDP), Wireless
Application Protocol (WAP), Mobile IP protocol, and Voice
Over IP (VoIP) protocol. In other embodiments, multi-proto-
col compression engine 238 provides compression of Hyper-
text Markup Language (HTML) based protocols and in some
embodiments, provides compression of any markup lan-
guages, such as the Extensible Markup Language (XML). In
one embodiment, the multi-protocol compression engine 238
provides compression of any high-performance protocol,
such as any protocol designed for appliance 200 to appliance
200 communications. In another embodiment, the multi-pro-
tocol compression engine 238 compresses any payload of or
any communication using a modified transport control pro-
tocol, such as Transaction TCP (T/TCP), TCP with selection
acknowledgements (TCP-SACK), TCP with large windows
(TCP-LW), acongestion prediction protocol such as the TCP-
Vegas protocol, and a TCP spoofing protocol.

As such, the multi-protocol compression engine 238 accel-
erates performance for users accessing applications via desk-
top clients, e.g., Microsoft Outlook and non-Web thin clients,
such as any client launched by popular enterprise applications
like Oracle, SAP and Siebel, and even mobile clients, such as
the Pocket PC. In some embodiments, the multi-protocol
compression engine 238 by executing in the kernel mode 204
and integrating with packet processing engine 240 accessing
the network stack 267 is able to compress any of the protocols
carried by the TCP/IP protocol, such as any application layer
protocol.

High speed layer 2-7 integrated packet engine 240, also
generally referred to as a packet processing engine or packet
engine, is responsible for managing the kernel-level process-
ing of packets received and transmitted by appliance 200 via
network ports 266. The high speed layer 2-7 integrated packet
engine 240 may comprise a buffer for queuing one or more
network packets during processing, such as for receipt of a
network packet or transmission of a network packet. Addi-
tionally, the high speed layer 2-7 integrated packet engine 240
is in communication with one or more network stacks 267 to
send and receive network packets via network ports 266. The
high speed layer 2-7 integrated packet engine 240 works in
conjunction with encryption engine 234, cache manager 232,
policy engine 236 and multi-protocol compression logic 238.
In particular, encryption engine 234 is configured to perform
SSL processing of packets, policy engine 236 is configured to
perform functions related to traffic management such as
request-level content switching and request-level cache redi-
rection, and multi-protocol compression logic 238 is config-
ured to perform functions related to compression and decom-
pression of data.

The high speed layer 2-7 integrated packet engine 240
includes a packet processing timer 242. In one embodiment,
the packet processing timer 242 provides one or more time
intervals to trigger the processing of incoming, i.e., received,
or outgoing, i.e., transmitted, network packets. In some
embodiments, the high speed layer 2-7 integrated packet
engine 240 processes network packets responsive to the timer

10

15

20

25

30

35

40

45

50

55

60

65

22

242. The packet processing timer 242 provides any type and
form of signal to the packet engine 240 to notify, trigger, or
communicate a time related event, interval or occurrence. In
many embodiments, the packet processing timer 242 operates
in the order of milliseconds, such as for example 100 ms, 50
ms or 25 ms. For example, in some embodiments, the packet
processing timer 242 provides time intervals or otherwise
causes a network packet to be processed by the high speed
layer 2-7 integrated packet engine 240 at a 10 ms time inter-
val, while in other embodiments, at a 5 ms time interval, and
still yet in further embodiments, as shortasa 3,2, or 1 ms time
interval. The high speed layer 2-7 integrated packet engine
240 may be interfaced, integrated or in communication with
the encryption engine 234, cache manager 232, policy engine
236 and multi-protocol compression engine 238 during
operation. As such, any of the logic, functions, or operations
of the encryption engine 234, cache manager 232, policy
engine 236 and multi-protocol compression logic 238 may be
performed responsive to the packet processing timer 242
and/or the packet engine 240. Therefore, any of the logic,
functions, or operations of the encryption engine 234, cache
manager 232, policy engine 236 and multi-protocol compres-
sion logic 238 may be performed at the granularity of time
intervals provided via the packet processing timer 242, for
example, at a time interval of less than or equal to 10 ms. For
example, in one embodiment, the cache manager 232 may
perform invalidation of any cached objects responsive to the
high speed layer 2-7 integrated packet engine 240 and/or the
packet processing timer 242. In another embodiment, the
expiry or invalidation time of a cached object can be set to the
same order of granularity as the time interval of the packet
processing timer 242, such as at every 10 ms.

In contrast to kernel space 204, user space 202 is the
memory area or portion of the operating system used by user
mode applications or programs otherwise running in user
mode. A user mode application may not access kernel space
204 directly and uses service calls in order to access kernel
services. As shown in FIG. 2, user space 202 of appliance 200
includes a graphical user interface (GUI) 210, a command
line interface (CLI) 212, shell services 214, health monitoring
program 216, and daemon services 218. GUI 210 and CLI
212 provide ameans by which a system administrator or other
user can interact with and control the operation of appliance
200, such as via the operating system of the appliance 200.
The GUI 210 or CLI 212 can comprise code running in user
space 202 or kernel space 204. The GUI 210 may be any type
and form of graphical user interface and may be presented via
text, graphical or otherwise, by any type of program or appli-
cation, such as a browser. The CLI 212 may be any type and
form of command line or text-based interface, such as a
command line provided by the operating system. For
example, the CLI 212 may comprise a shell, which is a tool to
enable users to interact with the operating system. In some
embodiments, the CLI 212 may be provided via a bash, csh,
tesh, or ksh type shell. The shell services 214 comprises the
programs, services, tasks, processes or executable instruc-
tions to support interaction with the appliance 200 or operat-
ing system by a user via the GUI 210 and/or CLI 212.

Health monitoring program 216 is used to monitor, check,
report and ensure that network systems are functioning prop-
erly and that users are receiving requested content over a
network. Health monitoring program 216 comprises one or
more programs, services, tasks, processes or executable
instructions to provide logic, rules, functions or operations
for monitoring any activity of the appliance 200. In some
embodiments, the health monitoring program 216 intercepts
and inspects any network traffic passed via the appliance 200.

US 9,065,854 B2

23

In other embodiments, the health monitoring program 216
interfaces by any suitable means and/or mechanisms with one
or more of the following: the encryption engine 234, cache
manager 232, policy engine 236, multi-protocol compression
logic 238, packet engine 240, daemon services 218, and shell
services 214. As such, the health monitoring program 216
may call any application programming interface (API) to
determine a state, status, or health of any portion of the
appliance 200. For example, the health monitoring program
216 may ping or send a status inquiry on a periodic basis to
check if a program, process, service or task is active and
currently running. In another example, the health monitoring
program 216 may check any status, error or history logs
provided by any program, process, service or task to deter-
mine any condition, status or error with any portion of the
appliance 200.

Daemon services 218 are programs that run continuously
or in the background and handle periodic service requests
received by appliance 200. In some embodiments, a daemon
service may forward the requests to other programs or pro-
cesses, such as another daemon service 218 as appropriate. As
known to those skilled in the art, a daemon service 218 may
run unattended to perform continuous or periodic system
wide functions, such as network control, or to perform any
desired task. In some embodiments, one or more daemon
services 218 run in the user space 202, while in other embodi-
ments, one or more daemon services 218 run in the kernel
space.

Referring now to FIG. 2B, another embodiment of the
appliance 200 is depicted. In brief overview, the appliance
200 provides one or more of the following services, function-
ality or operations: SSL. VPN connectivity 280, switching/
load balancing 284, Domain Name Service resolution 286,
acceleration 288 and an application firewall 290 for commu-
nications between one or more clients 102 and one or more
servers 106. Each ofthe servers 106 may provide one or more
network related services 270a-270n (referred to as services
270). For example, a server 106 may provide an http service
270. The appliance 200 comprises one or more virtual servers
or virtual internet protocol servers, referred to as a vServer,
VIP server, or just VIP 275a-275n (also referred herein as
vServer 275). The vServer 275 receives, intercepts or other-
wise processes communications between a client 102 and a
server 106 in accordance with the configuration and opera-
tions of the appliance 200.

The vServer 275 may comprise software, hardware or any
combination of software and hardware. The vServer 275 may
comprise any type and form of program, service, task, process
or executable instructions operating in user mode 202, kernel
mode 204 or any combination thereof in the appliance 200.
The vServer 275 includes any logic, functions, rules, or
operations to perform any embodiments of the techniques
described herein, such as SSL. VPN 280, switching/load bal-
ancing 284, Domain Name Service resolution 286, accelera-
tion 288 and an application firewall 290. In some embodi-
ments, the vServer 275 establishes a connection to a service
270 of a server 106. The service 275 may comprise any
program, application, process, task or set of executable
instructions capable of connecting to and communicating to
the appliance 200, client 102 or vServer 275. For example, the
service 275 may comprise a web server, http server, ftp, email
or database server. In some embodiments, the service 270 is a
daemon process or network driver for listening, receiving
and/or sending communications for an application, such as
email, database or an enterprise application. In some embodi-
ments, the service 270 may communicate on a specific IP
address, or IP address and port.

10

15

20

25

30

35

40

45

50

55

60

65

24

In some embodiments, the vServer 275 applies one or more
policies of the policy engine 236 to network communications
between the client 102 and server 106. In one embodiment,
the policies are associated with a vServer 275. In another
embodiment, the policies are based on a user, or a group of
users. In yet another embodiment, a policy is global and
applies to one or more vServers 275a-275n, and any user or
group of users communicating via the appliance 200. In some
embodiments, the policies of the policy engine have condi-
tions upon which the policy is applied based on any content of
the communication, such as internet protocol address, port,
protocol type, header or fields in a packet, or the context of the
communication, such as user, group of the user, vServer 275,
transport layer connection, and/or identification or attributes
of the client 102 or server 106.

In other embodiments, the appliance 200 communicates or
interfaces with the policy engine 236 to determine authenti-
cation and/or authorization of a remote user or a remote client
102 to access the computing environment 15, application,
and/or data file from a server 106. In another embodiment, the
appliance 200 communicates or interfaces with the policy
engine 236 to determine authentication and/or authorization
of'a remote user or aremote client 102 to have the application
delivery system 190 deliver one or more of the computing
environment 15, application, and/or data file. In yet another
embodiment, the appliance 200 establishes a VPN or SSL
VPN connection based on the policy engine’s 236 authenti-
cation and/or authorization of a remote user or a remote client
102 In one embodiment, the appliance 200 controls the flow
of'network traffic and communication sessions based on poli-
cies of the policy engine 236. For example, the appliance 200
may control the access to a computing environment 15, appli-
cation or data file based on the policy engine 236.

In some embodiments, the vServer 275 establishes a trans-
port layer connection, such as a TCP or UDP connection with
a client 102 via the client agent 120. In one embodiment, the
vServer 275 listens for and receives communications from the
client 102. In other embodiments, the vServer 275 establishes
a transport layer connection, such as a TCP or UDP connec-
tion with a client server 106. In one embodiment, the vServer
275 establishes the transport layer connection to an internet
protocol address and port of a server 270 running on the server
106. In another embodiment, the vServer 275 associates a first
transport layer connection to a client 102 with a second trans-
port layer connection to the server 106. In some embodi-
ments, a vServer 275 establishes a pool of transport layer
connections to a server 106 and multiplexes client requests
via the pooled transport layer connections.

In some embodiments, the appliance 200 provides a SSL
VPN connection 280 between a client 102 and a server 106.
For example, a client 102 on a first network 102 requests to
establish a connection to a server 106 on a second network
104'. In some embodiments, the second network 104' is not
routable from the first network 104. In other embodiments,
the client 102 is on a public network 104 and the server 106 is
on a private network 104", such as a corporate network. In one
embodiment, the client agent 120 intercepts communications
of the client 102 on the first network 104, encrypts the com-
munications, and transmits the communications via a first
transport layer connection to the appliance 200. The appli-
ance 200 associates the first transport layer connection on the
first network 104 to a second transport layer connection to the
server 106 on the second network 104. The appliance 200
receives the intercepted communication from the client agent
102, decrypts the communications, and transmits the commu-
nication to the server 106 on the second network 104 via the
second transport layer connection. The second transport layer

US 9,065,854 B2

25

connection may be a pooled transport layer connection. As
such, the appliance 200 provides an end-to-end secure trans-
port layer connection for the client 102 between the two
networks 104, 104'.

In one embodiment, the appliance 200 hosts an intranet
internet protocol or IntranetIP 282 address ofthe client 102 on
the virtual private network 104. The client 102 has a local
network identifier, such as an internet protocol (IP) address
and/or host name on the first network 104. When connected to
the second network 104' via the appliance 200, the appliance
200 establishes, assigns or otherwise provides an IntranetIP
address 282, which is a network identifier, such as IP address
and/or host name, for the client 102 on the second network
104'. The appliance 200 listens for and receives on the second
or private network 104' for any communications directed
towards the client 102 using the client’s established
IntranetIP 282. In one embodiment, the appliance 200 acts as
or on behalf of the client 102 on the second private network
104. For example, in another embodiment, a vServer 275
listens for and responds to communications to the IntranetIP
282 of the client 102. In some embodiments, if a computing
device 100 on the second network 104' transmits a request, the
appliance 200 processes the request as if it were the client
102. For example, the appliance 200 may respond to a ping to
the client’s IntranetIP 282. In another example, the appliance
may establish a connection, such as a TCP or UDP connec-
tion, with computing device 100 on the second network 104
requesting a connection with the client’s IntranetIP 282.

In some embodiments, the appliance 200 provides one or
more of the following acceleration techniques 288 to com-
munications between the client 102 and server 106: 1) com-
pression; 2) decompression; 3) Transmission Control Proto-
col pooling; 4) Transmission Control Protocol multiplexing;
5) Transmission Control Protocol buffering; and 6) caching.
In one embodiment, the appliance 200 relieves servers 106 of
much of the processing load caused by repeatedly opening
and closing transport layers connections to clients 102 by
opening one or more transport layer connections with each
server 106 and maintaining these connections to allow
repeated data accesses by clients via the Internet. This tech-
nique is referred to herein as “connection pooling”.

In some embodiments, in order to seamlessly splice com-
munications from a client 102 to a server 106 via a pooled
transport layer connection, the appliance 200 translates or
multiplexes communications by modifying sequence number
and acknowledgment numbers at the transport layer protocol
level. This is referred to as “connection multiplexing”. In
some embodiments, no application layer protocol interaction
is required. For example, in the case of an in-bound packet
(that is, a packet received from a client 102), the source
network address of the packet is changed to that of an output
port of appliance 200, and the destination network address is
changed to that of the intended server. In the case of an
outbound packet (that is, one received from a server 106), the
source network address is changed from that of the server 106
to that of an output port of appliance 200 and the destination
address is changed from that of appliance 200 to that of the
requesting client 102. The sequence numbers and acknowl-
edgment numbers of the packet are also translated to
sequence numbers and acknowledgement numbers expected
by the client 102 on the appliance’s 200 transport layer con-
nection to the client 102. In some embodiments, the packet
checksum of the transport layer protocol is recalculated to
account for these translations.

In another embodiment, the appliance 200 provides
switching or load-balancing functionality 284 for communi-
cations between the client 102 and server 106. In some

35

40

45

50

55

26

embodiments, the appliance 200 distributes traffic and directs
client requests to a server 106 based on layer 4 or application-
layer request data. In one embodiment, although the network
layer or layer 2 of the network packet identifies a destination
server 106, the appliance 200 determines the server 106 to
distribute the network packet by application information and
data carried as payload of the transport layer packet. In one
embodiment, the health monitoring programs 216 of the
appliance 200 monitor the health of servers to determine the
server 106 for which to distribute a client’s request. In some
embodiments, if the appliance 200 detects a server 106 is not
available or has a load over a predetermined threshold, the
appliance 200 can direct or distribute client requests to
another server 106.

In some embodiments, the appliance 200 acts as a Domain
Name Service (DNS) resolver or otherwise provides resolu-
tion of a DNS request from clients 102. In some embodi-
ments, the appliance intercepts a DNS request transmitted by
the client 102. In one embodiment, the appliance 200
responds to a client’s DNS request with an IP address of or
hosted by the appliance 200. In this embodiment, the client
102 transmits network communication for the domain name
to the appliance 200. In another embodiment, the appliance
200 responds to a client’s DNS request with an IP address of
or hosted by a second appliance 200'. In some embodiments,
the appliance 200 responds to a client’s DNS request with an
IP address of a server 106 determined by the appliance 200.

In yet another embodiment, the appliance 200 provides
application firewall functionality 290 for communications
between the client 102 and server 106. In one embodiment,
the policy engine 236 provides rules for detecting and block-
ing illegitimate requests. In some embodiments, the applica-
tion firewall 290 protects against denial of service (DoS)
attacks. In other embodiments, the appliance inspects the
content of intercepted requests to identify and block applica-
tion-based attacks. In some embodiments, the rules/policy
engine 236 comprises one or more application firewall or
security control policies for providing protections against
various classes and types of web or Internet based vulnerabili-
ties, such as one or more of the following: 1) bufter overflow,
2) CGI-BIN parameter manipulation, 3) form/hidden field
manipulation, 4) forceful browsing, 5) cookie or session poi-
soning, 6) broken access control list (ACLs) or weak pass-
words, 7) cross-site scripting (XSS), 8) command injection,
9) SQL injection, 10) error triggering sensitive information
leak, 11) insecure use of cryptography, 12) server miscon-
figuration, 13) back doors and debug options, 14) website
defacement, 15) platform or operating systems vulnerabili-
ties, and 16) zero-day exploits. In an embodiment, the appli-
cation firewall 290 provides HTML form field protection in
the form of inspecting or analyzing the network communica-
tion for one or more of the following: 1) required fields are
returned, 2) no added field allowed, 3) read-only and hidden
field enforcement, 4) drop-down list and radio button field
conformance, and 5) form-field max-length enforcement. In
some embodiments, the application firewall 290 ensures
cookies are not modified. In other embodiments, the applica-
tion firewall 290 protects against forceful browsing by
enforcing legal URLs.

In still yet other embodiments, the application firewall 290
protects any confidential information contained in the net-
work communication. The application firewall 290 may
inspect or analyze any network communication in accordance
with the rules or polices of the engine 236 to identify any
confidential information in any field of the network packet. In
some embodiments, the application firewall 290 identifies in
the network communication one or more occurrences of a

US 9,065,854 B2

27

credit card number, password, social security number, name,
patient code, contact information, and age. The encoded por-
tion of the network communication may comprise these
occurrences or the confidential information. Based on these
occurrences, in one embodiment, the application firewall 290
may take a policy action on the network communication, such
as prevent transmission of the network communication. In
another embodiment, the application firewall 290 may
rewrite, remove or otherwise mask such identified occurrence
or confidential information.

Still referring to FIG. 2B, the appliance 200 may include a
performance monitoring agent 197 as discussed above in
conjunction with FIG. 1D. In one embodiment, the appliance
200 receives the monitoring agent 197 from the monitoring
service 198 or monitoring server 106 as depicted in FIG. 1D.
In some embodiments, the appliance 200 stores the monitor-
ing agent 197 in storage, such as disk, for delivery to any
client or server in communication with the appliance 200. For
example, in one embodiment, the appliance 200 transmits the
monitoring agent 197 to a client upon receiving a request to
establish a transport layer connection. In other embodiments,
the appliance 200 transmits the monitoring agent 197 upon
establishing the transport layer connection with the client
102. In another embodiment, the appliance 200 transmits the
monitoring agent 197 to the client upon intercepting or
detecting a request for a web page. In yet another embodi-
ment, the appliance 200 transmits the monitoring agent 197 to
a client or a server in response to a request from the monitor-
ing server 198. In one embodiment, the appliance 200 trans-
mits the monitoring agent 197 to a second appliance 200' or
appliance 205.

In other embodiments, the appliance 200 executes the
monitoring agent 197. In one embodiment, the monitoring
agent 197 measures and monitors the performance of any
application, program, process, service, task or thread execut-
ing on the appliance 200. For example, the monitoring agent
197 may monitor and measure performance and operation of
vServers 275A-275N. In another embodiment, the monitor-
ing agent 197 measures and monitors the performance of any
transport layer connections of the appliance 200. In some
embodiments, the monitoring agent 197 measures and moni-
tors the performance of any user sessions traversing the appli-
ance 200. In one embodiment, the monitoring agent 197
measures and monitors the performance of any virtual private
network connections and/or sessions traversing the appliance
200, such an SSL VPN session. In still further embodiments,
the monitoring agent 197 measures and monitors the memory,
CPU and disk usage and performance of the appliance 200. In
yet another embodiment, the monitoring agent 197 measures
and monitors the performance of any acceleration technique
288 performed by the appliance 200, such as SSL offloading,
connection pooling and multiplexing, caching, and compres-
sion. In some embodiments, the monitoring agent 197 mea-
sures and monitors the performance of any load balancing
and/or content switching 284 performed by the appliance
200. In other embodiments, the monitoring agent 197 mea-
sures and monitors the performance of application firewall
290 protection and processing performed by the appliance
200.

C. Client Agent

Referring now to FIG. 3, an embodiment of the client agent
120 is depicted. The client 102 includes a client agent 120 for
establishing and exchanging communications with the appli-
ance 200 and/or server 106 via a network 104. In brief over-
view, the client 102 operates on computing device 100 having
an operating system with a kernel mode 302 and a user mode
303, and a network stack 310 with one or more layers 310a-

10

20

25

30

40

45

60

28

3105. The client 102 may have installed and/or execute one or
more applications. In some embodiments, one or more appli-
cations may communicate via the network stack 310 to a
network 104. One of the applications, such as a web browser,
may also include a first program 322. For example, the first
program 322 may be used in some embodiments to install
and/or execute the client agent 120, or any portion thereof.
The client agent 120 includes an interception mechanism, or
interceptor 350, for intercepting network communications
from the network stack 310 from the one or more applica-
tions.

The network stack 310 of the client 102 may comprise any
type and form of software, or hardware, or any combinations
thereof, for providing connectivity to and communications
with a network. In one embodiment, the network stack 310
comprises a software implementation for a network protocol
suite. The network stack 310 may comprise one or more
network layers, such as any networks layers of the Open
Systems Interconnection (OSI) communications model as
those skilled in the art recognize and appreciate. As such, the
network stack 310 may comprise any type and form of pro-
tocols for any of the following layers of the OSI model: 1)
physical link layer, 2) data link layer, 3) network layer, 4)
transport layer, 5) session layer, 6) presentation layer, and 7)
application layer. In one embodiment, the network stack 310
may comprise a transport control protocol (TCP) over the
network layer protocol of the internet protocol (IP), generally
referred to as TCP/IP. In some embodiments, the TCP/IP
protocol may be carried over the Ethernet protocol, which
may comprise any of the family of IEEE wide-area-network
(WAN) or local-area-network (LAN) protocols, such as those
protocols covered by the IEEE 802.3. In some embodiments,
the network stack 310 comprises any type and form of a
wireless protocol, such as IEEE 802.11 and/or mobile inter-
net protocol.

In view of a TCP/IP based network, any TCP/IP based
protocol may be used, including Messaging Application Pro-
gramming Interface (MAPI) (email), File Transter Protocol
(FTP), HyperText Transfer Protocol (HTTP), Common Inter-
net File System (CIFS) protocol (file transfer), Independent
Computing Architecture (ICA) protocol, Remote Desktop
Protocol (RDP), Wireless Application Protocol (WAP),
Mobile IP protocol, and Voice Over IP (VoIP) protocol. In
another embodiment, the network stack 310 comprises any
type and form of transport control protocol, such as a modi-
fied transport control protocol, for example a Transaction
TCP (T/TCP), TCP with selection acknowledgements (TCP-
SACK), TCP with large windows (TCP-LW), a congestion
prediction protocol such as the TCP-Vegas protocol, and a
TCP spoofing protocol. In other embodiments, any type and
form of user datagram protocol (UDP), such as UDP over IP,
may be used by the network stack 310, such as for voice
communications or real-time data communications.

Furthermore, the network stack 310 may include one or
more network drivers supporting the one or more layers, such
as a TCP driver or a network layer driver. The network drivers
may be included as part of the operating system of the com-
puting device 100 or as part of any network interface cards or
other network access components of the computing device
100. In some embodiments, any of the network drivers of the
network stack 310 may be customized, modified or adapted to
provide a custom or modified portion of the network stack
310 in support of any of the techniques described herein. In
other embodiments, the acceleration program 302 is designed
and constructed to operate with or work in conjunction with
the network stack 310 installed or otherwise provided by the
operating system of the client 102.

US 9,065,854 B2

29

The network stack 310 comprises any type and form of
interfaces for receiving, obtaining, providing or otherwise
accessing any information and data related to network com-
munications of the client 102. In one embodiment, an inter-
face to the network stack 310 comprises an application pro-
gramming interface (API). The interface may also comprise
any function call, hooking or filtering mechanism, event or
call back mechanism, or any type of interfacing technique.
The network stack 310 via the interface may receive or pro-
vide any type and form of data structure, such as an object,
related to functionality or operation of the network stack 310.
For example, the data structure may comprise information
and data related to a network packet or one or more network
packets. In some embodiments, the data structure comprises
a portion of the network packet processed at a protocol layer
of the network stack 310, such as a network packet of the
transport layer. In some embodiments, the data structure 325
comprises a kernel-level data structure, while in other
embodiments, the data structure 325 comprises a user-mode
data structure. A kernel-level data structure may comprise a
data structure obtained or related to a portion of the network
stack 310 operating in kernel-mode 302, or a network driver
or other software running in kernel-mode 302, or any data
structure obtained or received by a service, process, task,
thread or other executable instructions running or operating in
kernel-mode of the operating system.

Additionally, some portions of the network stack 310 may
execute or operate in kernel-mode 302, for example, the data
link or network layer, while other portions execute or operate
in user-mode 303, such as an application layer of the network
stack 310. For example, a first portion 310a of the network
stack may provide user-mode access to the network stack 310
to an application while a second portion 310a of the network
stack 310 provides access to a network. In some embodi-
ments, a first portion 310q of the network stack may comprise
one or more upper layers of the network stack 310, such as
any of layers 5-7. In other embodiments, a second portion
3105 of the network stack 310 comprises one or more lower
layers, such as any of layers 1-4. Each of the first portion 310a
and second portion 3105 of the network stack 310 may com-
prise any portion of the network stack 310, at any one or more
network layers, in user-mode 203, kernel-mode, 202, or com-
binations thereof, or at any portion of a network layer or
interface point to a network layer or any portion of or interface
point to the user-mode 203 and kernel-mode 203.

The interceptor 350 may comprise software, hardware, or
any combination of software and hardware. In one embodi-
ment, the interceptor 350 intercept a network communication
at any point in the network stack 310, and redirects or trans-
mits the network communication to a destination desired,
managed or controlled by the interceptor 350 or client agent
120. For example, the interceptor 350 may intercept a net-
work communication of anetwork stack 310 of a first network
and transmit the network communication to the appliance 200
for transmission on a second network 104. In some embodi-
ments, the interceptor 350 comprises any type interceptor 350
comprises a driver, such as a network driver constructed and
designed to interface and work with the network stack 310. In
some embodiments, the client agent 120 and/or interceptor
350 operates at one or more layers of the network stack 310,
such as at the transport layer. In one embodiment, the inter-
ceptor 350 comprises a filter driver, hooking mechanism, or
any form and type of suitable network driver interface that
interfaces to the transport layer of the network stack, such as
via the transport driver interface (TDI). In some embodi-
ments, the interceptor 350 interfaces to a first protocol layer,
such as the transport layer and another protocol layer, such as

10

15

20

25

30

35

40

45

50

55

60

65

30

any layer above the transport protocol layer, for example, an
application protocol layer. In one embodiment, the intercep-
tor 350 may comprise a driver complying with the Network
Driver Interface Specification (NDIS), or a NDIS driver. In
another embodiment, the interceptor 350 may comprise a
mini-filter or a mini-port driver. In one embodiment, the inter-
ceptor 350, or portion thereof, operates in kernel-mode 202.
In another embodiment, the interceptor 350, or portion
thereof, operates in user-mode 203. In some embodiments, a
portion of the interceptor 350 operates in kernel-mode 202
while another portion of the interceptor 350 operates in user-
mode 203. In other embodiments, the client agent 120 oper-
ates in user-mode 203 but interfaces via the interceptor 350 to
a kernel-mode driver, process, service, task or portion of the
operating system, such as to obtain a kernel-level data struc-
ture 225. In further embodiments, the interceptor 350 is a
user-mode application or program, such as application.

In one embodiment, the interceptor 350 intercepts any
transport layer connection requests. In these embodiments,
the interceptor 350 execute transport layer application pro-
gramming interface (API) calls to set the destination infor-
mation, such as destination IP address and/or port to a desired
location for the location. In this manner, the interceptor 350
intercepts and redirects the transport layer connection to a IP
address and port controlled or managed by the interceptor 350
or client agent 120. In one embodiment, the interceptor 350
sets the destination information for the connection to a local
IP address and port of the client 102 on which the client agent
120 is listening. For example, the client agent 120 may com-
prise a proxy service listening on a local IP address and port
for redirected transport layer communications. In some
embodiments, the client agent 120 then communicates the
redirected transport layer communication to the appliance
200.

In some embodiments, the interceptor 350 intercepts a
Domain Name Service (DNS) request. In one embodiment,
the client agent 120 and/or interceptor 350 resolves the DNS
request. In another embodiment, the interceptor transmits the
intercepted DNS request to the appliance 200 for DNS reso-
Iution. In one embodiment, the appliance 200 resolves the
DNS request and communicates the DNS response to the
client agent 120. In some embodiments, the appliance 200
resolves the DNS request via another appliance 200' or a DNS
server 106.

In yet another embodiment, the client agent 120 may com-
prise two agents 120 and 120'. In one embodiment, a first
agent 120 may comprise an interceptor 350 operating at the
network layer of the network stack 310. In some embodi-
ments, the first agent 120 intercepts network layer requests
such as Internet Control Message Protocol (ICMP) requests
(e.g., ping and traceroute). In other embodiments, the second
agent 120' may operate at the transport layer and intercept
transport layer communications. In some embodiments, the
first agent 120 intercepts communications at one layer of the
network stack 210 and interfaces with or communicates the
intercepted communication to the second agent 120'.

The client agent 120 and/or interceptor 350 may operate at
or interface with a protocol layer in a manner transparent to
any other protocol layer of the network stack 310. For
example, in one embodiment, the interceptor 350 operates or
interfaces with the transport layer of the network stack 310
transparently to any protocol layer below the transport layer,
such as the network layer, and any protocol layer above the
transport layer, such as the session, presentation or applica-
tion layer protocols. This allows the other protocol layers of
the network stack 310 to operate as desired and without
modification for using the interceptor 350. As such, the client

US 9,065,854 B2

31

agent 120 and/or interceptor 350 can interface with the trans-
port layer to secure, optimize, accelerate, route or load-bal-
ance any communications provided via any protocol carried
by the transport layer, such as any application layer protocol
over TCP/IP.

Furthermore, the client agent 120 and/or interceptor may
operate at or interface with the network stack 310 in a manner
transparent to any application, a user ofthe client 102, and any
other computing device, such as a server, in communications
with the client 102. The client agent 120 and/or interceptor
350 may be installed and/or executed on the client 102 in a
manner without modification of an application. In some
embodiments, the user of the client 102 or a computing device
in communications with the client 102 are not aware of the
existence, execution or operation of the client agent 120 and/
or interceptor 350. As such, in some embodiments, the client
agent 120 and/or interceptor 350 is installed, executed, and/or
operated transparently to an application, user of the client
102, another computing device, such as a server, or any of the
protocol layers above and/or below the protocol layer inter-
faced to by the interceptor 350.

The client agent 120 includes an acceleration program 302,
a streaming client 306, a collection agent 304, and/or moni-
toring agent 197. In one embodiment, the client agent 120
comprises an Independent Computing Architecture (ICA)
client, or any portion thereof, developed by Citrix Systems,
Inc. of Fort Lauderdale, Fla., and is also referred to as an ICA
client. In some embodiments, the client 120 comprises an
application streaming client 306 for streaming an application
from a server 106 to a client 102. In some embodiments, the
client agent 120 comprises an acceleration program 302 for
accelerating communications between client 102 and server
106. In another embodiment, the client agent 120 includes a
collection agent 304 for performing end-point detection/
scanning and collecting end-point information for the appli-
ance 200 and/or server 106.

In some embodiments, the acceleration program 302 com-
prises a client-side acceleration program for performing one
or more acceleration techniques to accelerate, enhance or
otherwise improve a client’s communications with and/or
access to a server 106, such as accessing an application pro-
vided by a server 106. The logic, functions, and/or operations
of'the executable instructions of the acceleration program 302
may perform one or more of the following acceleration tech-
niques: 1) multi-protocol compression, 2) transport control
protocol pooling, 3) transport control protocol multiplexing,
4) transport control protocol buffering, and 5) caching via a
cache manager. Additionally, the acceleration program 302
may perform encryption and/or decryption of any communi-
cations received and/or transmitted by the client 102. In some
embodiments, the acceleration program 302 performs one or
more of the acceleration techniques in an integrated manner
or fashion. Additionally, the acceleration program 302 can
perform compression on any of the protocols, or multiple-
protocols, carried as a payload of a network packet of the
transport layer protocol.

The streaming client 306 comprises an application, pro-
gram, process, service, task or executable instructions for
receiving and executing a streamed application from a server
106. A server 106 may stream one or more application data
files to the streaming client 306 for playing, executing or
otherwise causing to be executed the application on the client
102. In some embodiments, the server 106 transmits a set of
compressed or packaged application data files to the stream-
ing client 306. In some embodiments, the plurality of appli-
cation files are compressed and stored on a file server within
an archive file such as a CAB, ZIP, SIT, TAR, JAR or other

25

40

45

55

32

archive. In one embodiment, the server 106 decompresses,
unpackages or unarchives the application files and transmits
the files to the client 102. In another embodiment, the client
102 decompresses, unpackages or unarchives the application
files. The streaming client 306 dynamically installs the appli-
cation, or portion thereof, and executes the application. In one
embodiment, the streaming client 306 may be an executable
program. In some embodiments, the streaming client 306
may be able to launch another executable program.

The collection agent 304 comprises an application, pro-
gram, process, service, task or executable instructions for
identifying, obtaining and/or collecting information about the
client 102. In some embodiments, the appliance 200 transmits
the collection agent 304 to the client 102 or client agent 120.
The collection agent 304 may be configured according to one
or more policies of the policy engine 236 of the appliance. In
other embodiments, the collection agent 304 transmits col-
lected information on the client 102 to the appliance 200. In
one embodiment, the policy engine 236 of the appliance 200
uses the collected information to determine and provide
access, authentication and authorization control of the cli-
ent’s connection to a network 104.

In one embodiment, the collection agent 304 comprises an
end-point detection and scanning mechanism, which identi-
fies and determines one or more attributes or characteristics of
the client. For example, the collection agent 304 may identify
and determine any one or more of the following client-side
attributes: 1) the operating system and/or a version of an
operating system, 2) a service pack of the operating system, 3)
a running service, 4) a running process, and 5) a file. The
collection agent 304 may also identify and determine the
presence or versions of any one or more of the following on
the client: 1) antivirus software, 2) personal firewall software,
3) anti-spam software, and 4) internet security software. The
policy engine 236 may have one or more policies based on
any one or more of the attributes or characteristics of the client
or client-side attributes.

In some embodiments, the client agent 120 includes a
monitoring agent 197 as discussed in conjunction with FIGS.
1D and 2B. The monitoring agent 197 may be any type and
form of script, such as Visual Basic or Java script. In one
embodiment, the monitoring agent 197 monitors and mea-
sures performance of any portion of the client agent 120. For
example, in some embodiments, the monitoring agent 197
monitors and measures performance of the acceleration pro-
gram 302. In another embodiment, the monitoring agent 197
monitors and measures performance of the streaming client
306. In other embodiments, the monitoring agent 197 moni-
tors and measures performance of the collection agent 304. In
still another embodiment, the monitoring agent 197 monitors
and measures performance of the interceptor 350. In some
embodiments, the monitoring agent 197 monitors and mea-
sures any resource of the client 102, such as memory, CPU
and disk.

The monitoring agent 197 may monitor and measure per-
formance of any application of the client. In one embodiment,
the monitoring agent 197 monitors and measures perfor-
mance of a browser on the client 102. In some embodiments,
the monitoring agent 197 monitors and measures perfor-
mance of any application delivered via the client agent 120. In
other embodiments, the monitoring agent 197 measures and
monitors end user response times for an application, such as
web-based or HTTP response times. The monitoring agent
197 may monitor and measure performance of an ICA or RDP
client. In another embodiment, the monitoring agent 197
measures and monitors metrics for a user session or applica-
tion session. In some embodiments, monitoring agent 197

US 9,065,854 B2

33

measures and monitors an ICA or RDP session. In one
embodiment, the monitoring agent 197 measures and moni-
tors the performance of the appliance 200 in accelerating
delivery of an application and/or data to the client 102.

In some embodiments and still referring to FIG. 3, a first
program 322 may be used to install and/or execute the client
agent 120, or portion thereof, such as the interceptor 350,
automatically, silently, transparently, or otherwise. In one
embodiment, the first program 322 comprises a plugin com-
ponent, such an ActiveX control or Java control or script that
is loaded into and executed by an application. For example,
the first program comprises an ActiveX control loaded and
run by a web browser application, such as in the memory
space or context of the application. In another embodiment,
the first program 322 comprises a set of executable instruc-
tions loaded into and run by the application, such as a
browser. In one embodiment, the first program 322 comprises
a designed and constructed program to install the client agent
120. In some embodiments, the first program 322 obtains,
downloads, or receives the client agent 120 via the network
from another computing device. In another embodiment, the
first program 322 is an installer program or a plug and play
manager for installing programs, such as network drivers, on
the operating system of the client 102.

D. Systems and Methods for Providing Virtualized Applica-
tion Delivery Controller

Referring now to FIG. 4A, a block diagram depicts one
embodiment of a virtualization environment 400. In brief
overview, a computing device 100 includes a hypervisor
layer, a virtualization layer, and a hardware layer. The hyper-
visor layer includes a hypervisor 401 (also referred to as a
virtualization manager) that allocates and manages access to
anumber of physical resources in the hardware layer (e.g., the
processor(s) 421, and disk(s) 428) by at least one virtual
machine executing in the virtualization layer. The virtualiza-
tion layer includes at least one operating system 410 and a
plurality of virtual resources allocated to the at least one
operating system 410. Virtual resources may include, without
limitation, a plurality of virtual processors 432a, 4325, 432¢
(generally 432), and virtual disks 442a, 4425, 442¢ (generally
442), as well as virtual resources such as virtual memory and
virtual network interfaces. The plurality of virtual resources
and the operating system 410 may be referred to as a virtual
machine 406. A virtual machine 406 may include a control
operating system 405 in communication with the hypervisor
401 and used to execute applications for managing and con-
figuring other virtual machines on the computing device 100.

In greater detail, a hypervisor 401 may provide virtual
resources to an operating system in any manner which simu-
lates the operating system having access to a physical device.
A hypervisor 401 may provide virtual resources to any num-
ber of guest operating systems 410a, 4105 (generally 410). In
some embodiments, a computing device 100 executes one or
more types of hypervisors. In these embodiments, hypervi-
sors may be used to emulate virtual hardware, partition physi-
cal hardware, virtualize physical hardware, and execute vir-
tual machines that provide access to computing
environments. Hypervisors may include those manufactured
by VM Ware, Inc., of Palo Alto, Calif.; the XEN hypervisor, an
open source product whose development is overseen by the
open source Xen.org community; HyperV, VirtualServer or
virtual PC hypervisors provided by Microsoft, or others. In
some embodiments, a computing device 100 executing a
hypervisor that creates a virtual machine platform on which
guest operating systems may execute is referred to as a host
server. In one of these embodiments, for example, the com-

25

40

45

55

34
puting device 100 is a XEN SERVER provided by Citrix
Systems, Inc., of Fort Lauderdale, Fla.

In some embodiments, a hypervisor 401 executes within an
operating system executing on a computing device. In one of
these embodiments, a computing device executing an oper-
ating system and a hypervisor 401 may be said to have a host
operating system (the operating system executing on the com-
puting device), and a guest operating system (an operating
system executing within a computing resource partition pro-
vided by the hypervisor 401). In other embodiments, a hyper-
visor 401 interacts directly with hardware on a computing
device, instead of executing on a host operating system. In
one of these embodiments, the hypervisor 401 may be said to
be executing on “bare metal,” referring to the hardware com-
prising the computing device.

In some embodiments, a hypervisor 401 may create a vir-
tual machine 406a-c (generally 406) in which an operating
system 410 executes. In one of these embodiments, for
example, the hypervisor 401 loads a virtual machine image to
create a virtual machine 406. In another of these embodi-
ments, the hypervisor 401 executes an operating system 410
within the virtual machine 406. In still another of these
embodiments, the virtual machine 406 executes an operating
system 410.

In some embodiments, the hypervisor 401 controls proces-
sor scheduling and memory partitioning for a virtual machine
406 executing on the computing device 100. In one of these
embodiments, the hypervisor 401 controls the execution of at
least one virtual machine 406. In another of these embodi-
ments, the hypervisor 401 presents at least one virtual
machine 406 with an abstraction of at least one hardware
resource provided by the computing device 100. In other
embodiments, the hypervisor 401 controls whether and how
physical processor capabilities are presented to the virtual
machine 406.

A control operating system 405 may execute at least one
application for managing and configuring the guest operating
systems. In one embodiment, the control operating system
405 may execute an administrative application, such as an
application including a user interface providing administra-
tors with access to functionality for managing the execution
of a virtual machine, including functionality for executing a
virtual machine, terminating an execution of a virtual
machine, or identifying a type of physical resource for allo-
cation to the virtual machine. In another embodiment, the
hypervisor 401 executes the control operating system 405
within a virtual machine 406 created by the hypervisor 401. In
still another embodiment, the control operating system 405
executes in a virtual machine 406 that is authorized to directly
access physical resources on the computing device 100. In
some embodiments, a control operating system 405a on a
computing device 100a may exchange data with a control
operating system 4055 on a computing device 1005, via com-
munications between a hypervisor 401a and a hypervisor
4015. In this way, one or more computing devices 100 may
exchange data with one or more of the other computing
devices 100 regarding processors and other physical
resources available in a pool of resources. In one of these
embodiments, this functionality allows a hypervisor to man-
age a pool of resources distributed across a plurality of physi-
cal computing devices. In another of these embodiments,
multiple hypervisors manage one or more of the guest oper-
ating systems executed on one of the computing devices 100.

In one embodiment, the control operating system 405
executes in a virtual machine 406 that is authorized to interact
with at least one guest operating system 410. In another
embodiment, a guest operating system 410 communicates

US 9,065,854 B2

35

with the control operating system 405 via the hypervisor 401
in order to request access to a disk or a network. In still
another embodiment, the guest operating system 410 and the
control operating system 405 may communicate via a com-
munication channel established by the hypervisor 401, such
as, for example, via a plurality of shared memory pages made
available by the hypervisor 401.

In some embodiments, the control operating system 405
includes a network back-end driver for communicating
directly with networking hardware provided by the comput-
ing device 100. In one of these embodiments, the network
back-end driver processes at least one virtual machine request
from at least one guest operating system 110. In other
embodiments, the control operating system 405 includes a
block back-end driver for communicating with a storage ele-
ment on the computing device 100. In one of these embodi-
ments, the block back-end driver reads and writes data from
the storage element based upon at least one request received
from a guest operating system 410.

In one embodiment, the control operating system 405
includes a tools stack 404. In another embodiment, a tools
stack 404 provides functionality for interacting with the
hypervisor 401, communicating with other control operating
systems 405 (for example, on a second computing device
1004), or managing virtual machines 4065, 406¢ on the com-
puting device 100. In another embodiment, the tools stack
404 includes customized applications for providing improved
management functionality to an administrator of a virtual
machine farm. In some embodiments, at least one of the tools
stack 404 and the control operating system 405 include a
management API that provides an interface for remotely con-
figuring and controlling virtual machines 406 running on a
computing device 100. In other embodiments, the control
operating system 405 communicates with the hypervisor 401
through the tools stack 404.

In one embodiment, the hypervisor 401 executes a guest
operating system 410 within a virtual machine 406 created by
the hypervisor 401. In another embodiment, the guest oper-
ating system 410 provides a user of the computing device 100
with access to resources within a computing environment. In
still another embodiment, a resource includes a program, an
application, a document, a file, a plurality of applications, a
plurality of files, an executable program file, a desktop envi-
ronment, a computing environment, or other resource made
available to a user of the computing device 100. In yet another
embodiment, the resource may be delivered to the computing
device 100 via a plurality of access methods including, but not
limited to, conventional installation directly on the comput-
ing device 100, delivery to the computing device 100 via a
method for application streaming, delivery to the computing
device 100 of output data generated by an execution of the
resource on a second computing device 100" and communi-
cated to the computing device 100 via a presentation layer
protocol, delivery to the computing device 100 of output data
generated by an execution of the resource via a virtual
machine executing on a second computing device 100', or
execution from a removable storage device connected to the
computing device 100, such as a USB device, or via a virtual
machine executing on the computing device 100 and gener-
ating output data. In some embodiments, the computing
device 100 transmits output data generated by the execution
of the resource to another computing device 100"

In one embodiment, the guest operating system 410, in
conjunction with the virtual machine on which it executes,
forms a fully-virtualized virtual machine which is not aware
that it is a virtual machine; such a machine may be referred to
as a “Domain U HVM (Hardware Virtual Machine) virtual

5

10

15

20

25

30

35

40

45

50

55

60

65

36

machine”. In another embodiment, a fully-virtualized
machine includes software emulating a Basic Input/Output
System (BIOS) in order to execute an operating system within
the fully-virtualized machine. In still another embodiment, a
fully-virtualized machine may include a driver that provides
functionality by communicating with the hypervisor 401. In
such an embodiment, the driver may be aware that it executes
within a virtualized environment. In another embodiment, the
guest operating system 410, in conjunction with the virtual
machine on which it executes, forms a paravirtualized virtual
machine, which is aware that it is a virtual machine; such a
machine may be referred to as a “Domain U PV virtual
machine”. In another embodiment, a paravirtualized machine
includes additional drivers that a fully-virtualized machine
does not include. In still another embodiment, the paravirtu-
alized machine includes the network back-end driver and the
block back-end driver included in a control operating system
405, as described above.

Referring now to FIG. 4B, a block diagram depicts one
embodiment of a plurality of networked computing devices in
a system in which at least one physical host executes a virtual
machine. In brief overview, the system includes a manage-
ment component 404 and a hypervisor 401. The system
includes a plurality of computing devices 100, a plurality of
virtual machines 406, a plurality of hypervisors 401, a plu-
rality of management components referred to variously as
tools stacks 404 or management components 404, and a
physical resource 421, 428. The plurality of physical
machines 100 may each be provided as computing devices
100, described above in connection with FIGS. 1E-1H and
4A.

In greater detail, a physical disk 428 is provided by a
computing device 100 and stores at least a portion of a virtual
disk 442. In some embodiments, a virtual disk 442 is associ-
ated with a plurality of physical disks 428. In one of these
embodiments, one or more computing devices 100 may
exchange data with one or more of the other computing
devices 100 regarding processors and other physical
resources available in a pool of resources, allowing a hyper-
visor to manage a pool of resources distributed across a plu-
rality of physical computing devices. In some embodiments,
a computing device 100 on which a virtual machine 406
executes is referred to as a physical host 100 or as a host
machine 100.

The hypervisor executes on a processor on the computing
device 100. The hypervisor allocates, to a virtual disk, an
amount of access to the physical disk. In one embodiment, the
hypervisor 401 allocates an amount of space on the physical
disk. In another embodiment, the hypervisor 401 allocates a
plurality of pages on the physical disk. In some embodiments,
the hypervisor provisions the virtual disk 442 as part of a
process of initializing and executing a virtual machine 450.

In one embodiment, the management component 404q is
referred to as a pool management component 404a. In another
embodiment, a management operating system 405a, which
may be referred to as a control operating system 405a,
includes the management component. In some embodiments,
the management component is referred to as a tools stack. In
one of these embodiments, the management component is the
tools stack 404 described above in connection with FIG. 4A.
In other embodiments, the management component 404 pro-
vides a user interface for receiving, from a user such as an
administrator, an identification of a virtual machine 406 to
provision and/or execute. In still other embodiments, the
management component 404 provides a user interface for
receiving, from a user such as an administrator, the request for
migration of a virtual machine 4065 from one physical

US 9,065,854 B2

37

machine 100 to another. In further embodiments, the man-
agement component 404 identifies a computing device 1005
on which to execute a requested virtual machine 4064 and
instructs the hypervisor 4015 on the identified computing
device 1005 to execute the identified virtual machine; such a
management component may be referred to as a pool man-
agement component.

Referring now to FIG. 4C, embodiments of a virtual appli-
cation delivery controller or virtual appliance 450 are
depicted. In brief overview, any of the functionality and/or
embodiments of the appliance 200 (e.g., an application deliv-
ery controller) described above in connection with FIGS. 2A
and 2B may be deployed in any embodiment of the virtualized
environment described above in connection with FIGS. 4A
and 4B. Instead of the functionality ofthe application delivery
controller being deployed in the form of an appliance 200,
such functionality may be deployed in a virtualized environ-
ment 400 on any computing device 100, such as a client 102,
server 106 or appliance 200.

Referring now to FIG. 4C, a diagram of an embodiment of
a virtual appliance 450 operating on a hypervisor 401 of a
server 106 is depicted. As with the appliance 200 of FIGS. 2A
and 2B, the virtual appliance 450 may provide functionality
for availability, performance, offload and security. For avail-
ability, the virtual appliance may perform load balancing
between layers 4 and 7 of the network and may also perform
intelligent service health monitoring. For performance
increases via network traffic acceleration, the virtual appli-
ance may perform caching and compression. To offload pro-
cessing of any servers, the virtual appliance may perform
connection multiplexing and pooling and/or SSL processing.
For security, the virtual appliance may perform any of the
application firewall functionality and SSL. VPN function of
appliance 200.

Any of the modules of the appliance 200 as described in
connection with FIG. 2A may be packaged, combined,
designed or constructed in a form of'the virtualized appliance
delivery controller 450 deployable as one or more software
modules or components executable in a virtualized environ-
ment 300 or non-virtualized environment on any server, such
as an off the shelf server. For example, the virtual appliance
may be provided in the form of an installation package to
install on a computing device. With reference to FIG. 2A, any
of the cache manager 232, policy engine 236, compression
238, encryption engine 234, packet engine 240, GUI 210, CLI
212, shell services 214 and health monitoring programs 216
may be designed and constructed as a software component or
module to run on any operating system of a computing device
and/or of a virtualized environment 300. Instead of using the
encryption processor 260, processor 262, memory 264 and
network stack 267 of the appliance 200, the virtualized appli-
ance 400 may use any of these resources as provided by the
virtualized environment 400 or as otherwise available on the
server 106.

Still referring to FIG. 4C, and in brief overview, any one or
more vServers 275A-275N may be in operation or executed
in a virtualized environment 400 of any type of computing
device 100, such as any server 106. Any of the modules or
functionality of the appliance 200 described in connection
with FIG. 2B may be designed and constructed to operate in
either a virtualized or non-virtualized environment of a
server. Any of the vServer 275, SSL. VPN 280, Intranet UP
282, Switching 284, DNS 286, acceleration 288, App FW 280
and monitoring agent may be packaged, combined, designed
or constructed in a form of application delivery controller 450
deployable as one or more software modules or components
executable on a device and/or virtualized environment 400.

30

40

45

55

38

In some embodiments, a server may execute multiple vir-
tual machines 406a-406x in the virtualization environment
with each virtual machine running the same or different
embodiments of the virtual application delivery controller
450. In some embodiments, the server may execute one or
more virtual appliances 450 on one or more virtual machines
on a core of a multi-core processing system. In some embodi-
ments, the server may execute one or more virtual appliances
450 on one or more virtual machines on each processor of a
multiple processor device.

E. Systems and Methods for Providing a Multi-Core Archi-
tecture

In accordance with Moore’s Law, the number of transistors
that may be placed on an integrated circuit may double
approximately every two years. However, CPU speed
increases may reach plateaus, for example CPU speed has
been around 3.5-4 GHz range since 2005. In some cases, CPU
manufacturers may not rely on CPU speed increases to gain
additional performance. Some CPU manufacturers may add
additional cores to their processors to provide additional per-
formance. Products, such as those of software and network-
ing vendors, that rely on CPUs for performance gains may
improve their performance by leveraging these multi-core
CPUs. The software designed and constructed for a single
CPU may be redesigned and/or rewritten to take advantage of
a multi-threaded, parallel architecture or otherwise a multi-
core architecture.

A multi-core architecture of the appliance 200, referred to
as nCore or multi-core technology, allows the appliance in
some embodiments to break the single core performance
barrier and to leverage the power of multi-core CPUs. In the
previous architecture described in connection with FIG. 2A, a
single network or packet engine is run. The multiple cores of
the nCore technology and architecture allow multiple packet
engines to run concurrently and/or in parallel. With a packet
engine running on each core, the appliance architecture lever-
ages the processing capacity of additional cores. In some
embodiments, this provides up to a 7x increase in perfor-
mance and scalability.

Illustrated in FIG. 5A are some embodiments of work, task,
load or network traffic distribution across one or more pro-
cessor cores according to a type of parallelism or parallel
computing scheme, such as functional parallelism, data par-
allelism or flow-based data parallelism. In brief overview,
FIG. 5A illustrates embodiments of a multi-core system such
as an appliance 200" with n-cores, a total of cores numbers 1
through N. In one embodiment, work, load or network traffic
can be distributed among a first core 505A, a second core
505B, athird core 505C, a fourth core 505D, a fifth core 505E,
a sixth core 505F, a seventh core 505G, and so on such that
distribution is across all or two or more of the n cores S05N
(hereinafter referred to collectively as cores 505.) There may
be multiple VIPs 275 each running on a respective core of the
plurality of cores. There may be multiple packet engines 240
each running on a respective core of the plurality of cores.
Any of the approaches used may lead to different, varying or
similar work load or performance level 515 across any of the
cores. For a functional parallelism approach, each core may
run a different function of the functionalities provided by the
packet engine, a VIP 275 or appliance 200. In a data parallel-
ism approach, data may be paralleled or distributed across the
cores based on the Network Interface Card (NIC) or VIP 275
receiving the data. In another data parallelism approach, pro-
cessing may be distributed across the cores by distributing
data flows to each core.

In further detail to FIG. 5A, in some embodiments, load,
work or network traffic can be distributed among cores 505

US 9,065,854 B2

39

according to functional parallelism 500. Functional parallel-
ism may be based on each core performing one or more
respective functions. In some embodiments, a first core may
perform a first function while a second core performs a sec-
ond function. In functional parallelism approach, the func-
tions to be performed by the multi-core system are divided
and distributed to each core according to functionality. In
some embodiments, functional parallelism may be referred to
as task parallelism and may be achieved when each processor
or core executes a different process or function on the same or
different data. The core or processor may execute the same or
different code. In some cases, different execution threads or
code may communicate with one another as they work. Com-
munication may take place to pass data from one thread to the
next as part of a worktlow.

In some embodiments, distributing work across the cores
505 according to functional parallelism 500, can comprise
distributing network traffic according to a particular function
such as network input/output management (NW 1/O) 510A,
secure sockets layer (SSL) encryption and decryption 510B
and transmission control protocol (TCP) functions 510C.
This may lead to a work, performance or computing load 515
based on a volume or level of functionality being used. In
some embodiments, distributing work across the cores 505
according to data parallelism 540, can comprise distributing
an amount of work 515 based on distributing data associated
with a particular hardware or software component. In some
embodiments, distributing work across the cores 505 accord-
ing to flow-based data parallelism 520, can comprise distrib-
uting data based on a context or flow such that the amount of
work 515A-N on each core may be similar, substantially
equal or relatively evenly distributed.

In the case of the functional parallelism approach, each
core may be configured to run one or more functionalities of
the plurality of functionalities provided by the packet engine
or VIP of the appliance. For example, core 1 may perform
network I/O processing for the appliance 200' while core 2
performs TCP connection management for the appliance.
Likewise, core 3 may perform SSL offloading while core 4
may perform layer 7 or application layer processing and
traffic management. Each of the cores may perform the same
function or different functions. Each of the cores may per-
form more than one function. Any of the cores may run any of
the functionality or portions thereof identified and/or
described in conjunction with FIGS. 2A and 2B. In this the
approach, the work across the cores may be divided by func-
tion in either a coarse-grained or fine-grained manner. In
some cases, as illustrated in FIG. 5A, division by function
may lead to different cores running at different levels of
performance or load 515.

In the case of the functional parallelism approach, each
core may be configured to run one or more functionalities of
the plurality of functionalities provided by the packet engine
of the appliance. For example, core 1 may perform network
1/0O processing for the appliance 200" while core 2 performs
TCP connection management for the appliance. Likewise,
core 3 may perform SSL offloading while core 4 may perform
layer 7 or application layer processing and traffic manage-
ment. Each of the cores may perform the same function or
different functions. Each of the cores may perform more than
one function. Any of the cores may run any of the function-
ality or portions thereof identified and/or described in con-
junction with FIGS. 2A and 2B. In this the approach, the work
across the cores may be divided by function in either a coarse-
grained or fine-grained manner. In some cases, as illustrated
in FIG. 5A division by function may lead to different cores
running at different levels of load or performance.

10

15

20

25

30

35

40

45

50

55

60

65

40

The functionality or tasks may be distributed in any
arrangement and scheme. For example, FIG. 5B illustrates a
first core, Core 1 505A, processing applications and pro-
cesses associated with network I/O functionality 510A. Net-
work traffic associated with network I/0, in some embodi-
ments, can be associated with a particular port number. Thus,
outgoing and incoming packets having a port destination
associated with NW I/O 510A will be directed towards Core
1 505A which is dedicated to handling all network traffic
associated with the NW 1/O port. Similarly, Core 2 505B is
dedicated to handling functionality associated with SSL pro-
cessing and Core 4 505D may be dedicated handling all TCP
level processing and functionality.

While FIG. 5A illustrates functions such as network 1/O,
SSL and TCP, other functions can be assigned to cores. These
other functions can include any one or more of the functions
or operations described herein. For example, any of the func-
tions described in conjunction with FIGS. 2A and 2B may be
distributed across the cores on a functionality basis. In some
cases, a first VIP 275A may run on a first core while a second
VIP 275B with a different configuration may run on a second
core. In some embodiments, each core 505 can handle a
particular functionality such that each core 505 can handle the
processing associated with that particular function. For
example, Core 2 505B may handle SSL offloading while Core
4 505D may handle application layer processing and traffic
management.

In other embodiments, work, load or network traffic may
be distributed among cores 505 according to any type and
form of data parallelism 540. In some embodiments, data
parallelism may be achieved in a multi-core system by each
core performing the same task or functionally on different
pieces of distributed data. In some embodiments, a single
execution thread or code controls operations on all pieces of
data. In other embodiments, different threads or instructions
control the operation, but may execute the same code. Insome
embodiments, data parallelism is achieved from the perspec-
tive of a packet engine, vServers (VIPs) 275A-C, network
interface cards (NIC) 542D-E and/or any other networking
hardware or software included on or associated with an appli-
ance 200. For example, each core may run the same packet
engine or VIP code or configuration but operate on different
sets of distributed data. Each networking hardware or soft-
ware construct can receive different, varying or substantially
the same amount of data, and as a result may have varying,
different or relatively the same amount of load 515.

Inthe case of a data parallelism approach, the work may be
divided up and distributed based on VIPs, NICs and/or data
flows of the VIPs or NICs. In one of these approaches, the
work of the multi-core system may be divided or distributed
among the VIPs by having each VIP work on a distributed set
of'data. For example, each core may be configured to run one
or more VIPs. Network traffic may be distributed to the core
for each VIP handling that traffic. In another of these
approaches, the work of the appliance may be divided or
distributed among the cores based on which NIC receives the
network traffic. For example, network traffic of a first NIC
may be distributed to a first core while network traffic of a
second NIC may be distributed to a second core. In some
cases, a core may process data from multiple NICs.

While FIG. 5A illustrates a single vServer associated with
a single core 505, as is the case for VIP1 275A, VIP2 275B
and VIP3 275C. In some embodiments, a single vServer can
be associated with one or more cores 505. In contrast, one or
more vServers can be associated with a single core 505.
Associating a vServer with a core 505 may include that core
505 to process all functions associated with that particular

US 9,065,854 B2

41

vServer. In some embodiments, each core executes a VIP
having the same code and configuration. In other embodi-
ments, each core executes a VIP having the same code but
different configuration. In some embodiments, each core
executes a VIP having different code and the same or different
configuration.

Like vServers, NICs can also be associated with particular
cores 505. In many embodiments, NICs can be connected to
one or more cores 505 such that when a NIC receives or
transmits data packets, a particular core 505 handles the pro-
cessing involved with receiving and transmitting the data
packets. In one embodiment, a single NIC can be associated
with a single core 505, as is the case with NIC1 542D and
NIC2 542E. In other embodiments, one or more NICs can be
associated with a single core 505. In other embodiments, a
single NIC can be associated with one or more cores 505. In
these embodiments, load could be distributed amongst the
one or more cores 505 such that each core 505 processes a
substantially similar amount of load. A core 505 associated
with a NIC may process all functions and/or data associated
with that particular NIC.

While distributing work across cores based on data of VIPs
or NICs may have a level of independency, in some embodi-
ments, this may lead to unbalanced use of cores as illustrated
by the varying loads 515 of FIG. 5A.

In some embodiments, load, work or network traffic can be
distributed among cores 505 based on any type and form of
data flow. In another of these approaches, the work may be
divided or distributed among cores based on data flows. For
example, network traffic between a client and a server tra-
versing the appliance may be distributed to and processed by
one core of the plurality of cores. In some cases, the core
initially establishing the session or connection may be the
core for which network traffic for that session or connection is
distributed. In some embodiments, the data flow is based on
any unit or portion of network traffic, such as a transaction, a
request/response communication or traffic originating from
anapplication on a client. In this manner and in some embodi-
ments, data flows between clients and servers traversing the
appliance 200' may be distributed in a more balanced manner
than the other approaches.

In flow-based data parallelism 520, distribution of data is
related to any type of flow of data, such as request/response
pairings, transactions, sessions, connections or application
communications. For example, network traffic between a cli-
ent and a server traversing the appliance may be distributed to
and processed by one core of the plurality of cores. In some
cases, the core initially establishing the session or connection
may be the core for which network traffic for that session or
connection is distributed. The distribution of data flow may be
such that each core 505 carries a substantially equal or rela-
tively evenly distributed amount of load, data or network
traffic.

In some embodiments, the data flow is based on any unit or
portion of network traffic, such as a transaction, a request/
response communication or traffic originating from an appli-
cation on a client. In this manner and in some embodiments,
data flows between clients and servers traversing the appli-
ance 200' may be distributed in a more balanced manner than
the other approached. In one embodiment, data flow can be
distributed based on a transaction or a series of transactions.
This transaction, in some embodiments, can be between a
client and a server and can be characterized by an IP address
or other packet identifier. For example, Core 1 505A can be
dedicated to transactions between a particular client and a
particular server, therefore the load 515A on Core 1 505A
may be comprised of the network traffic associated with the

25

30

40

45

55

42

transactions between the particular client and server. Allocat-
ing the network traffic to Core 1 505A can be accomplished
by routing all data packets originating from either the particu-
lar client or server to Core 1 505A.

While work or load can be distributed to the cores based in
part on transactions, in other embodiments load or work can
be allocated on a per packet basis. In these embodiments, the
appliance 200 can intercept data packets and allocate them to
a core 505 having the least amount of load. For example, the
appliance 200 could allocate a first incoming data packet to
Core 1 505A because the load 515A on Core 1 is less than the
load 515B-N on the rest of the cores 505B-N. Once the first
data packet is allocated to Core 1 505A, the amount of load
515A on Core 1 505A is increased proportional to the amount
of processing resources needed to process the first data
packet. When the appliance 200 intercepts a second data
packet, the appliance 200 will allocate the load to Core 4
505D because Core 4 505D has the second least amount of
load. Allocating data packets to the core with the least amount
of load can, in some embodiments, ensure that the load
515A-N distributed to each core 505 remains substantially
equal.

In other embodiments, load can be allocated on a per unit
basis where a section of network traffic is allocated to a
particular core 505. The above-mentioned example illustrates
load balancing on a per/packet basis. In other embodiments,
load can be allocated based on a number of packets such that
every 10, 100 or 1000 packets are allocated to the core 505
having the least amount of load. The number of packets
allocated to a core 505 can be a number determined by an
application, user or administrator and can be any number
greater than zero. In still other embodiments, load can be
allocated based on a time metric such that packets are distrib-
uted to a particular core 505 for a predetermined amount of
time. In these embodiments, packets can be distributed to a
particular core 505 for five milliseconds or for any period of
time determined by a user, program, system, administrator or
otherwise. After the predetermined time period elapses, data
packets are transmitted to a different core 505 for the prede-
termined period of time.

Flow-based data parallelism methods for distributing
work, load or network traffic among the one or more cores
505 can comprise any combination of the above-mentioned
embodiments. These methods can be carried out by any part
of the appliance 200, by an application or set of executable
instructions executing on one of the cores 505, such as the
packet engine, or by any application, program or agent
executing on a computing device in communication with the
appliance 200.

The functional and data parallelism computing schemes
illustrated in FIG. 5A can be combined in any manner to
generate a hybrid parallelism or distributed processing
scheme that encompasses function parallelism 500, data par-
allelism 540, flow-based data parallelism 520 or any portions
thereof. In some cases, the multi-core system may use any
type and form of load balancing schemes to distribute load
among the one or more cores 505. The load balancing scheme
may be used in any combination with any of the functional
and data parallelism schemes or combinations thereof.

Tustrated in FIG. 5B is an embodiment of a multi-core
system 545, which may be any type and form of one or more
systems, appliances, devices or components. This system
545, in some embodiments, can be included within an appli-
ance 200 having one or more processing cores 505A-N. The
system 545 can further include one or more packet engines
(PE) or packet processing engines (PPE) 548 A-N communi-
cating with a memory bus 556. The memory bus may be used

US 9,065,854 B2

43

to communicate with the one or more processing cores S05A-
N. Also included within the system 545 can be one or more
network interface cards (NIC) 552 and a flow distributor 550
which can further communicate with the one or more pro-
cessing cores 505A-N. The flow distributor 550 can comprise
a Receive Side Scaler (RSS) or Receive Side Scaling (RSS)
module 560.

Further referring to FIG. 5B, and in more detail, in one
embodiment the packet engine(s) 548 A-N can comprise any
portion of the appliance 200 described herein, such as any
portion of the appliance described in FIGS. 2A and 2B. The
packet engine(s) 548A-N can, in some embodiments, com-
prise any of the following elements: the packet engine 240, a
network stack 267; a cache manager 232; a policy engine 236;
a compression engine 238; an encryption engine 234; a GUI
210; a CLI1212; shell services 214; monitoring programs 216;
and any other software or hardware element able to receive
data packets from one of either the memory bus 556 or the one
of more cores 505A-N. In some embodiments, the packet
engine(s) 548 A-N can comprise one or more vServers 275A-
N, or any portion thereof. In other embodiments, the packet
engine(s) S48A-N can provide any combination of the fol-
lowing functionalities: SSL. VPN 280; Intranet UP 282;
switching 284; DNS 286; packet acceleration 288; App FW
280; monitoring such as the monitoring provided by a moni-
toring agent 197; functionalities associated with functioning
as a TCP stack; load balancing; SSL offloading and process-
ing; content switching; policy evaluation; caching; compres-
sion; encoding; decompression; decoding; application fire-
wall functionalities; XML processing and acceleration; and
SSL VPN connectivity.

The packet engine(s) 548A-N can, in some embodiments,
be associated with a particular server, user, client or network.
When a packet engine 548 becomes associated with a par-
ticular entity, that packet engine 548 can process data packets
associated with that entity. For example, should a packet
engine 548 be associated with a first user, that packet engine
548 will process and operate on packets generated by the first
user, or packets having a destination address associated with
the first user. Similarly, the packet engine 548 may choose not
to be associated with a particular entity such that the packet
engine 548 can process and otherwise operate on any data
packets not generated by that entity or destined for that entity.

In some instances, the packet engine(s) 548A-N can be
configured to carry out the any of the functional and/or data
parallelism schemes illustrated in FIG. 5A. In these instances,
the packet engine(s) 548A-N can distribute functions or data
among the processing cores 505A-N so that the distribution is
according to the parallelism or distribution scheme. In some
embodiments, a single packet engine(s) 548 A-N carries out a
load balancing scheme, while in other embodiments one or
more packet engine(s) 548A-N carry out a load balancing
scheme. Each core 505A-N, in one embodiment, can be asso-
ciated with a particular packet engine 548 such that load
balancing can be carried out by the packet engine. Load
balancing may in this embodiment, require that each packet
engine 548A-N associated with a core 505 communicate with
the other packet engines associated with cores so that the
packet engines 548A-N can collectively determine where to
distribute load. One embodiment of this process can include
an arbiter that receives votes from each packet engine for
load. The arbiter can distribute load to each packet engine
548A-N based in part on the age of the engine’s vote and in
some cases a priority value associated with the current
amount of load on an engine’s associated core 505.

Any of the packet engines running on the cores may run in
user mode, kernel or any combination thereof. In some

10

15

20

25

30

35

40

45

50

55

60

65

44

embodiments, the packet engine operates as an application or
program running is user or application space. In these
embodiments, the packet engine may use any type and form
of interface to access any functionality provided by the ker-
nel. In some embodiments, the packet engine operates in
kernel mode or as part of the kernel. In some embodiments, a
first portion of the packet engine operates in user mode while
asecond portion of the packet engine operates in kernel mode.
In some embodiments, a first packet engine on a first core
executes in kernel mode while a second packet engine on a
second core executes in user mode. In some embodiments, the
packet engine or any portions thereof operates on or in con-
junction with the NIC or any drivers thereof.

In some embodiments the memory bus 556 can be any type
and form of memory or computer bus. While a single memory
bus 556 is depicted in FIG. 5B, the system 545 can comprise
any number of memory buses 556. In one embodiment, each
packet engine 548 can be associated with one or more indi-
vidual memory buses 556.

The NIC 552 can in some embodiments be any of the
network interface cards or mechanisms described herein. The
NIC 552 can have any number of ports. The NIC can be
designed and constructed to connect to any type and form of
network 104. While a single NIC 552 is illustrated, the system
545 can comprise any number of NICs 552. In some embodi-
ments, each core 505A-N can be associated with one or more
single NICs 552. Thus, each core 505 can be associated with
a single NIC 552 dedicated to a particular core 505. The cores
505A-N can comprise any of the processors described herein.
Further, the cores 505A-N can be configured according to any
of'the core 505 configurations described herein. Still further,
the cores 505A-N can have any of the core 505 functionalities
described herein. While FIG. 5B illustrates seven cores
505A-G, any number of cores 505 can be included within the
system 545. In particular, the system 545 can comprise “N”
cores, where “N” is a whole number greater than zero.

A core may have or use memory that is allocated or
assigned for use to that core. The memory may be considered
private or local memory of that core and only accessible by
that core. A core may have or use memory that is shared or
assigned to multiple cores. The memory may be considered
public or shared memory that is accessible by more than one
core. A core may use any combination of private and public
memory. With separate address spaces for each core, some
level of coordination is eliminated from the case of using the
same address space. With a separate address space, a core can
perform work on information and data in the core’s own
address space without worrying about conflicts with other
cores. Bach packet engine may have a separate memory pool
for TCP and/or SSL connections.

Further referring to F1G. 5B, any of the functionality and/or
embodiments of the cores 505 described above in connection
with FIG. 5A can be deployed in any embodiment of the
virtualized environment described above in connection with
FIGS. 4A and 4B. Instead of the functionality ofthe cores 505
being deployed in the form of a physical processor 505, such
functionality may be deployed in a virtualized environment
400 on any computing device 100, such as a client 102, server
106 or appliance 200. In other embodiments, instead of the
functionality of the cores 505 being deployed in the form of
an appliance or a single device, the functionality may be
deployed across multiple devices in any arrangement. For
example, one device may comprise two or more cores and
another device may comprise two or more cores. For
example, a multi-core system may include a cluster of com-
puting devices, a server farm or network of computing
devices. In some embodiments, instead of the functionality of

US 9,065,854 B2

45

the cores 505 being deployed in the form of cores, the func-
tionality may be deployed on a plurality of processors, such as
a plurality of single core processors.

In one embodiment, the cores 505 may be any type and
form of processor. In some embodiments, a core can function
substantially similar to any processor or central processing
unit described herein. In some embodiment, the cores 505
may comprise any portion of any processor described herein.
While FIG. 5A illustrates seven cores, there can exist any “N”
number of cores within an appliance 200, where “N” is any
whole number greater than one. In some embodiments, the
cores 505 can be installed within a common appliance 200,
while in other embodiments the cores 505 can be installed
within one or more appliance(s) 200 communicatively con-
nected to one another. The cores 505 can in some embodi-
ments comprise graphics processing software, while in other
embodiments the cores 505 provide general processing capa-
bilities. The cores 505 can be installed physically near each
other and/or can be communicatively connected to each other.
The cores may be connected by any type and form of bus or
subsystem physically and/or communicatively coupled to the
cores for transferring data between to, from and/or between
the cores.

While each core 505 can comprise software for communi-
cating with other cores, in some embodiments a core manager
(not shown) can facilitate communication between each core
505. In some embodiments, the kernel may provide core
management. The cores may interface or communicate with
each other using a variety of interface mechanisms. In some
embodiments, core to core messaging may be used to com-
municate between cores, such as a first core sending a mes-
sage or data to a second core via a bus or subsystem connect-
ing the cores. In some embodiments, cores may communicate
via any type and form of shared memory interface. In one
embodiment, there may be one or more memory locations
shared among all the cores. In some embodiments, each core
may have separate memory locations shared with each other
core. Forexample, a first core may have a first shared memory
with a second core and a second share memory with a third
core. In some embodiments, cores may communicate via any
type of programming or AP, such as function calls via the
kernel. In some embodiments, the operating system may rec-
ognize and support multiple core devices and provide inter-
faces and API for inter-core communications.

The flow distributor 550 can be any application, program,
library, script, task, service, process or any type and form of
executable instructions executing on any type and form of
hardware. In some embodiments, the flow distributor 550
may any design and construction of circuitry to perform any
of the operations and functions described herein. In some
embodiments, the flow distributor distribute, forwards,
routes, controls and/ors manage the distribution of data pack-
ets among the cores 505 and/or packet engine or VIPs running
on the cores. The flow distributor 550, in some embodiments,
can be referred to as an interface master. In one embodiment,
the flow distributor 550 comprises a set of executable instruc-
tions executing on a core or processor of the appliance 200. In
another embodiment, the flow distributor 550 comprises a set
of'executable instructions executing on a computing machine
in communication with the appliance 200. In some embodi-
ments, the flow distributor 550 comprises a set of executable
instructions executing on a NIC, such as firmware. In still
other embodiments, the flow distributor 550 comprises any
combination of software and hardware to distribute data
packets among cores or processors. In one embodiment, the
flow distributor 550 executes on at least one of the cores
505A-N, while in other embodiments a separate flow dis-

20

25

30

35

40

45

50

46

tributor 550 assigned to each core S05A-N executes on an
associated core 505A-N. The flow distributor may use any
type and form of statistical or probabilistic algorithms or
decision making to balance the flows across the cores. The
hardware of the appliance, such as a NIC, or the kernel may be
designed and constructed to support sequential operations
across the NICs and/or cores.

In embodiments where the system 545 comprises one or
more flow distributors 550, each flow distributor 550 can be
associated with a processor 505 or a packet engine 548. The
flow distributors 550 can comprise an interface mechanism
thatallows each flow distributor 550 to communicate with the
other flow distributors 550 executing within the system 545.
In one instance, the one or more flow distributors 550 can
determine how to balance load by communicating with each
other. This process can operate substantially similarly to the
process described above for submitting votes to an arbiter
which then determines which flow distributor 550 should
receive the load. In other embodiments, a first flow distributor
550' can identify the load on an associated core and determine
whether to forward a first data packet to the associated core
based on any of the following criteria: the load on the asso-
ciated core is above a predetermined threshold; the load on
the associated core is below a predetermined threshold; the
load on the associated core is less than the load on the other
cores; or any other metric that can be used to determine where
to forward data packets based in part on the amount of load on
a processor.

The flow distributor 550 can distribute network traffic
among the cores 505 according to a distribution, computing
or load balancing scheme such as those described herein. In
one embodiment, the flow distributor can distribute network
traffic according to any one of a functional parallelism distri-
bution scheme 550, a data parallelism load distribution
scheme 540, a flow-based data parallelism distribution
scheme 520, or any combination of these distribution scheme
or any load balancing scheme for distributing load among
multiple processors. The flow distributor 550 can therefore
act as a load distributor by taking in data packets and distrib-
uting them across the processors according to an operative
load balancing or distribution scheme. In one embodiment,
the flow distributor 550 can comprise one or more operations,
functions or logic to determine how to distribute packers,
work or load accordingly. In still other embodiments, the flow
distributor 550 can comprise one or more sub operations,
functions or logic that can identify a source address and a
destination address associated with a data packet, and distrib-
ute packets accordingly.

In some embodiments, the flow distributor 550 can com-
prise a receive-side scaling (RSS) network driver, module 560
or any type and form of executable instructions which dis-
tribute data packets among the one or more cores 505. The
RSS module 560 can comprise any combination of hardware
and software, In some embodiments, the RSS module 560
works in conjunction with the flow distributor 550 to distrib-
ute data packets across the cores 505A-N or among multiple
processors in a multi-processor network. The RSS module
560 can execute within the NIC 552 in some embodiments,
and in other embodiments can execute on any one of the cores
505.

In some embodiments, the RSS module 560 uses the
MICROSOFT receive-side-scaling (RSS) scheme. In one
embodiment, RSS is a Microsoft Scalable Networking initia-
tive technology that enables receive processing to be balanced
across multiple processors in the system while maintaining

US 9,065,854 B2

47

in-order delivery of the data. The RSS may use any type and
form of hashing scheme to determine a core or processor for
processing a network packet.

The RSS module 560 can apply any type and form hash
function such as the Toeplitz hash function. The hash function
may be applied to the hash type or any the sequence of values.
The hash function may be a secure hash of any security level
or is otherwise cryptographically secure. The hash function
may use a hash key. The size of the key is dependent upon the
hash function. For the Toeplitz hash, the size may be 40 bytes
for IPv6 and 16 bytes for IPv4.

The hash function may be designed and constructed based
on any one or more criteria or design goals. In some embodi-
ments, a hash function may be used that provides an even
distribution of hash result for different hash inputs and dif-
ferent hash types, including TCP/IPv4, TCP/IPv6, IPv4, and
IPv6 headers. In some embodiments, a hash function may be
used that provides a hash result that is evenly distributed when
a small number of buckets are present (for example, two or
four). In some embodiments, hash function may be used that
provides a hash result that is randomly distributed when a
large number of buckets were present (for example, 64 buck-
ets). In some embodiments, the hash function is determined
based on a level of computational or resource usage. In some
embodiments, the hash function is determined based on ease
or difficulty of implementing the hash in hardware. In some
embodiments, the hash function is determined based on the
ease or difficulty of a malicious remote host to send packets
that would all hash to the same bucket.

The RSS may generate hashes from any type and form of
input, such as a sequence of values. This sequence of values
can include any portion of the network packet, such as any
header, field or payload of network packet, or portions
thereof. In some embodiments, the input to the hash may be
referred to as a hash type and include any tuples of informa-
tion associated with a network packet or data flow, such as any
of the following: a four tuple comprising at least two IP
addresses and two ports; a four tuple comprising any four sets
of values; a six tuple; a two tuple; and/or any other sequence
of numbers or values. The following are example of hash
types that may be used by RSS:

4-tuple of source TCP Port, source IP version 4 (IPv4)

address, destination TCP Port, and destination IPv4
address.

4-tuple of source TCP Port, source IP version 6 (IPv6)

address, destination TCP Port, and destination IPv6
address.

2-tuple of source IPv4 address, and destination IPv4

address.

2-tuple of source IPv6 address, and destination IPv6

address.

2-tuple of source IPv6 address, and destination IPv6

address, including support for parsing IPv6 extension
headers.

The hash result or any portion thereof may be used to
identify a core or entity, such as a packet engine or VIP, for
distributing a network packet. In some embodiments, one or
more hash bits or mask are applied to the hash result. The hash
bit or mask may be any number of bits or bytes. A NIC may
support any number of bits, such as seven bits. The network
stack may set the actual number of bits to be used during
initialization. The number will be between 1 and 7, inclusive.

The hash result may be used to identify the core or entity
via any type and form of table, such as a bucket table or
indirection table. In some embodiments, the number of hash-
result bits are used to index into the table. The range of the
hash mask may effectively define the size of the indirection

10

15

20

25

30

35

40

45

50

55

60

65

48

table. Any portion of the hash result or the hast result itself
may be used to index the indirection table. The values in the
table may identify any of the cores or processor, such as by a
core or processor identifier. In some embodiments, all of the
cores of the multi-core system are identified in the table. In
other embodiments, a port of the cores of the multi-core
system are identified in the table. The indirection table may
comprise any number of buckets for example 2 to 128 buckets
that may be indexed by a hash mask. Each bucket may com-
prise a range of index values that identify a core or processor.
In some embodiments, the flow controller and/or RSS module
may rebalance the network rebalance the network load by
changing the indirection table.

In some embodiments, the multi-core system 575 does not
include a RSS driver or RSS module 560. In some of these
embodiments, a software steering module (not shown) or a
software embodiment of the RSS module within the system
can operate in conjunction with or as part of the flow distribu-
tor 550 to steer packets to cores 505 within the multi-core
system 575.

The flow distributor 550, in some embodiments, executes
within any module or program on the appliance 200, on any
one of the cores 505 and on any one of the devices or com-
ponents included within the multi-core system 575. In some
embodiments, the flow distributor 550' can execute on the first
core 505A, while in other embodiments the flow distributor
550" can execute on the NIC 552. In still other embodiments,
an instance of the flow distributor 550' can execute on each
core 505 included in the multi-core system 575. In this
embodiment, each instance of the flow distributor 550' can
communicate with other instances of the flow distributor 550
to forward packets back and forth across the cores 505. There
exist situations where a response to a request packet may not
be processed by the same core, i.e. the first core processes the
request while the second core processes the response. In these
situations, the instances of the flow distributor 550' can inter-
cept the packet and forward it to the desired or correct core
505, i.e. a flow distributor instance 550' can forward the
response to the first core. Multiple instances of the flow dis-
tributor 550' can execute on any number of cores 505 and any
combination of cores 505.

The flow distributor may operate responsive to any one or
more rules or policies. The rules may identify a core or packet
processing engine to receive a network packet, data or data
flow. The rules may identify any type and form of tuple
information related to a network packet, such as a 4-tuple of
source and destination IP address and source and destination
ports. Based on areceived packet matching the tuple specified
by the rule, the flow distributor may forward the packet to a
core or packet engine. In some embodiments, the packet is
forwarded to a core via shared memory and/or core to core
messaging.

Although FIG. 5B illustrates the flow distributor 550 as
executing within the multi-core system 575, in some embodi-
ments the flow distributor 550 can execute on a computing
device or appliance remotely located from the multi-core
system 575. In such an embodiment, the flow distributor 550
can communicate with the multi-core system 575 to take in
data packets and distribute the packets across the one or more
cores 505. The flow distributor 550 can, in one embodiment,
receive data packets destined for the appliance 200, apply a
distribution scheme to the received data packets and distribute
the data packets to the one or more cores 505 of the multi-core
system 575. In one embodiment, the flow distributor 550 can
be included in a router or other appliance such that the router
can target particular cores 505 by altering meta data associ-
ated with each packet so that each packet is targeted towards

US 9,065,854 B2

49

a sub-node of the multi-core system 575. In such an embodi-
ment, CISCO’s vn-tag mechanism can be used to alter or tag
each packet with the appropriate meta data.

Illustrated in FIG. 5C is an embodiment of a multi-core
system 575 comprising one or more processing cores 505A-
N. In brief overview, one of the cores 505 can be designated
as a control core 505A and can be used as a control plane 570
for the other cores 505. The other cores may be secondary
cores which operate in a data plane while the control core
provides the control plane. The cores 505A-N may share a
global cache 580. While the control core provides a control
plane, the other cores in the multi-core system form or pro-
vide a data plane. These cores perform data processing func-
tionality on network traffic while the control provides initial-
ization, configuration and control of the multi-core system.

Further referring to FIG. 5C, and in more detail, the cores
505A-N as well as the control core 505A can be any processor
described herein. Furthermore, the cores 505A-N and the
control core 505A can be any processor able to function
within the system 575 described in FIG. 5C. Still further, the
cores S05A-N and the control core S05A can be any core or
group of cores described herein. The control core may be a
different type of core or processor than the other cores. In
some embodiments, the control may operate a different
packet engine or have a packet engine configured differently
than the packet engines of the other cores.

Any portion of the memory of each of the cores may be
allocated to or used for a global cache that is shared by the
cores. In brief overview, a predetermined percentage or pre-
determined amount of each of the memory of each core may
be used for the global cache. For example, 50% of each
memory of each core may be dedicated or allocated to the
shared global cache. That is, in the illustrated embodiment, 2
GB of each core excluding the control plane core or core 1
may be used to form a 28 GB shared global cache. The
configuration of the control plane such as via the configura-
tion services may determine the amount of memory used for
the shared global cache. In some embodiments, each core
may provide a different amount of memory for use by the
global cache. In other embodiments, any one core may not
provide any memory or use the global cache. In some embodi-
ments, any of the cores may also have a local cache in memory
not allocated to the global shared memory. Each of the cores
may store any portion of network traffic to the global shared
cache. Each of the cores may check the cache for any content
to use in a request or response. Any of the cores may obtain
content from the global shared cache to use in a data flow,
request or response.

The global cache 580 can be any type and form of memory
or storage element, such as any memory or storage element
described herein. In some embodiments, the cores 505 may
have access to a predetermined amount of memory (i.e. 32
GB or any other memory amount commensurate with the
system 575). The global cache 580 can be allocated from that
predetermined amount of memory while the rest of the avail-
able memory can be allocated among the cores 505. In other
embodiments, each core 505 can have a predetermined
amount of memory. The global cache 580 can comprise an
amount of the memory allocated to each core 505. This
memory amount can be measured in bytes, or can be mea-
sured as a percentage of the memory allocated to each core
505. Thus, the global cache 580 can comprise 1 GB of
memory from the memory associated with each core 505, or
can comprise 20 percent or one-half of the memory associ-
ated with each core 505. In some embodiments, only a portion
of the cores 505 provide memory to the global cache 580,

20

35

40

45

50

50

while in other embodiments the global cache 580 can com-
prise memory not allocated to the cores 505.

Each core 505 can use the global cache 580 to store net-
work traffic or cache data. In some embodiments, the packet
engines of the core use the global cache to cache and use data
stored by the plurality of packet engines. For example, the
cache manager of FIG. 2A and cache functionality of FIG. 2B
may use the global cache to share data for acceleration. For
example, each of the packet engines may store responses,
such as HTML data, to the global cache. Any of the cache
managers operating on a core may access the global cache to
server caches responses to client requests.

In some embodiments, the cores 505 can use the global
cache 580 to store a port allocation table which can be used to
determine data flow based in part on ports. In other embodi-
ments, the cores 505 can use the global cache 580 to store an
address lookup table or any other table or list that can be used
by the flow distributor to determine where to direct incoming
and outgoing data packets. The cores 505 can, in some
embodiments read from and write to cache 580, while in other
embodiments the cores 505 can only read from or write to
cache 580. The cores may use the global cache to perform
core to core communications.

The global cache 580 may be sectioned into individual
memory sections where each section can be dedicated to a
particular core 505. In one embodiment, the control core
505A can receive a greater amount of available cache, while
the other cores 505 can receiving varying amounts or access
to the global cache 580.

In some embodiments, the system 575 can comprise a
control core S05A. While FIG. 5C illustrates core 1 505A as
the control core, the control core can be any core within the
appliance 200 or multi-core system. Further, while only a
single control core is depicted, the system 575 can comprise
one or more control cores each having a level of control over
the system. In some embodiments, one or more control cores
can each control a particular aspect of the system 575. For
example, one core can control deciding which distribution
scheme to use, while another core can determine the size of
the global cache 580.

The control plane of the multi-core system may be the
designation and configuration of a core as the dedicated man-
agement core or as a master core. This control plane core may
provide control, management and coordination of operation
and functionality the plurality of cores in the multi-core sys-
tem. This control plane core may provide control, manage-
ment and coordination of allocation and use of memory of the
system among the plurality of cores in the multi-core system,
including initialization and configuration of the same. In
some embodiments, the control plane includes the flow dis-
tributor for controlling the assignment of data flows to cores
and the distribution of network packets to cores based on data
flows. In some embodiments, the control plane core runs a
packet engine and in other embodiments, the control plane
core is dedicated to management and control of the other
cores of the system.

The control core 505A can exercise a level of control over
the other cores 505 such as determining how much memory
should be allocated to each core 505 or determining which
core 505 should be assigned to handle a particular function or
hardware/software entity. The control core 505A, in some
embodiments, can exercise control over those cores 505
within the control plan 570. Thus, there can exist processors
outside of the control plane 570 which are not controlled by
the control core 505A. Determining the boundaries of the
control plane 570 can include maintaining, by the control core
505A or agent executing within the system 575, a list of those

US 9,065,854 B2

51

cores 505 controlled by the control core 505A. The control
core 505 A can control any of the following: initialization of a
core; determining when a core is unavailable; re-distributing
load to other cores 505 when one core fails; determining
which distribution scheme to implement; determining which
core should receive network traffic; determining how much
cache should be allocated to each core; determining whether
to assign a particular function or element to a particular core;
determining whether to permit cores to communicate with
one another; determining the size ofthe global cache 580; and
any other determination of a function, configuration or opera-
tion of the cores within the system 575.

F. Systems and Methods for Providing a Distributed Cluster
Architecture

As discussed in the previous section, to overcome limita-
tions on transistor spacing and CPU speed increases, many
CPU manufacturers have incorporated multi-core CPUs to
improve performance beyond that capable of even a single,
higher speed CPU. Similar or further performance gains may
be made by operating a plurality of appliances, either single
or multi-core, together as a distributed or clustered appliance.
Individual computing devices or appliances may be referred
to as nodes of the cluster. A centralized management system
may perform load balancing, distribution, configuration, or
other tasks to allow the nodes to operate in conjunction as a
single computing system. Externally or to other devices,
including servers and clients, in many embodiments, the clus-
ter may be viewed as a single virtual appliance or computing
device, albeit one with performance exceeding that of a typi-
cal individual appliance.

Referring now to FIG. 6, illustrated is an embodiment of a
computing device cluster or appliance cluster 600. A plurality
of appliances 200a-2007 or other computing devices, some-
times referred to as nodes, such as desktop computers, serv-
ers, rackmount servers, blade servers, or any other type and
form of computing device may be joined into a single appli-
ance cluster 600. Although referred to as an appliance cluster,
in many embodiments, the cluster may operate as an applica-
tion server, network storage server, backup service, or any
other type of computing device without limitation. In many
embodiments, the appliance cluster 600 may be used to per-
form many of the functions of appliances 200, WAN optimi-
zation devices, network acceleration devices, or other devices
discussed above.

In some embodiments, the appliance cluster 600 may com-
prise a homogenous set of computing devices, such as iden-
tical appliances, blade servers within one or more chassis,
desktop or rackmount computing devices, or other devices. In
other embodiments, the appliance cluster 600 may comprise
a heterogeneous or mixed set of devices, including different
models of appliances, mixed appliances and servers, or any
other set of computing devices. This may allow for an appli-
ance cluster 600 to be expanded or upgraded over time with
new models or devices, for example.

Insome embodiments, each computing device or appliance
200 of an appliance cluster 600 may comprise a multi-core
appliance, as discussed above. In many such embodiments,
the core management and flow distribution methods dis-
cussed above may be utilized by each individual appliance, in
addition to the node management and distribution methods
discussed herein. This may be thought of as a two-tier dis-
tributed system, with one appliance comprising and distrib-
uting data to multiple nodes, and each node comprising and
distributing data for processing to multiple cores. Accord-
ingly, in such embodiments, the node distribution system

5

15

20

25

30

35

40

45

55

60

52

need not manage flow distribution to individual cores, as that
may be taken care of by a master or control core as discussed
above.

In many embodiments, an appliance cluster 600 may be
physically grouped, such as a plurality of blade servers in a
chassis or plurality of rackmount devices in a single rack, but
in other embodiments, the appliance cluster 600 may be dis-
tributed in a plurality of chassis, plurality of racks, plurality of
rooms in a data center, plurality of data centers, or any other
physical arrangement. Accordingly, the appliance cluster 600
may be considered a virtual appliance, grouped via common
configuration, management, and purpose, rather than a physi-
cal group.

In some embodiments, an appliance cluster 600 may be
connected to one or more networks 104, 104'. For example,
referring briefly back to FIG. 1A, in some embodiments, an
appliance 200 may be deployed between a network 104
joined to one or more clients 102, and a network 104' joined
to one or more servers 106. An appliance cluster 600 may be
similarly deployed to operate as a single appliance. In many
embodiments, this may not require any network topology
changes external to appliance cluster 600, allowing for ease of
installation and scalability from a single appliance scenario.
In other embodiments, an appliance cluster 600 may be simi-
larly deployed as shown in FIGS. 1B-1D or discussed above.
In still other embodiments, an appliance cluster may com-
prise a plurality of virtual machines or processes executed by
one or more servers. For example, in one such embodiment, a
server farm may execute a plurality of virtual machines, each
virtual machine configured as an appliance 200, and a plural-
ity of the virtual machines acting in concert as an appliance
cluster 600. In yet still other embodiments, an appliance
cluster 600 may comprise a mix of appliances 200 or virtual
machines configured as appliances 200. In some embodi-
ments, appliance cluster 600 may be geographically distrib-
uted, with the plurality of appliances 200 not co-located. For
example, referring back to FIG. 6, in one such embodiment, a
first appliance 200a may be located at a first site, such as a
data center and a second appliance 2005 may be located at a
second site, such as a central office or corporate headquarters.
In a further embodiment, such geographically remote appli-
ances may be joined by a dedicated network, such as a T1 or
T3 point-to-point connection; a VPN; or any other type and
form of network. Accordingly, although there may be addi-
tional communications latency compared to co-located appli-
ances 200a-2005, there may be advantages in reliability in
case of site power failures or communications outages, scal-
ability, or other benefits. In some embodiments, latency
issues may be reduced through geographic or network-based
distribution of data flows. For example, although configured
as an appliance cluster 600, communications from clients and
servers at the corporate headquarters may be directed to the
appliance 20056 deployed at the site, load balancing may be
weighted by location, or similar steps can be taken to mitigate
any latency.

Still referring to FIG. 6, an appliance cluster 600 may be
connected to a network via a client data plane 602. In some
embodiments, client data plane 602 may comprise a commu-
nication network, such as a network 104, carrying data
between clients and appliance cluster 600. In some embodi-
ments, client data plane 602 may comprise a switch, hub,
router, or other network devices bridging an external network
104 and the plurality of appliances 200a-200# of the appli-
ance cluster 600. For example, in one such embodiment, a
router may be connected to an external network 104, and
connected to a network interface of each appliance 200a-
2007. In some embodiments, this router or switch may be

US 9,065,854 B2

53

referred to as an interface manager, and may further be con-
figured to distribute traffic evenly across the nodes in the
application cluster 600. Thus, in many embodiments, the
interface master may comprise a flow distributor external to
appliance cluster 600. In other embodiments, the interface
master may comprise one of appliances 200a-200%. For
example, a first appliance 200a may serve as the interface
master, receiving incoming traffic for the appliance cluster
600 and distributing the traffic across each of appliances
2005-2007. In some embodiments, return traffic may simi-
larly flow from each of appliances 2005-2007 via the first
appliance 200q serving as the interface master. In other
embodiments, return traffic from each of appliances 20054-
2007 may be transmitted directly to a network 104, 104', or
via an external router, switch, or other device. In some
embodiments, appliances 200 of the appliance cluster not
serving as an interface master may be referred to as interface
slaves.

The interface master may perform load balancing or traffic
flow distribution in any of a variety of ways. For example, in
some embodiments, the interface master may comprise a
router performing equal-cost multi-path (ECMP) routing
with next hops configured with appliances or nodes of the
cluster. The interface master may use an open-shortest path
first (OSPF) In some embodiments, the interface master may
use a stateless hash-based mechanism for traffic distribution,
such as hashes based on IP address or other packet informa-
tion tuples, as discussed above. Hash keys and/or salt may be
selected for even distribution across the nodes. In other
embodiments, the interface master may perform flow distri-
bution via link aggregation (LAG) protocols, or any other
type and form of flow distribution, load balancing, and rout-
ing.

In some embodiments, the appliance cluster 600 may be
connected to a network via a server data plane 604. Similar to
client data plane 602, server data plane 604 may comprise a
communication network, such as a network 104', carrying
data between servers and appliance cluster 600. In some
embodiments, server data plane 604 may comprise a switch,
hub, router, or other network devices bridging an external
network 104' and the plurality of appliances 200a-2007 of the
appliance cluster 600. For example, in one such embodiment,
a router may be connected to an external network 104', and
connected to a network interface of each appliance 200a-
2007. In many embodiments, each appliance 200a-2007. may
comprise multiple network interfaces, with a first network
interface connected to client data plane 602 and a second
network interface connected to server data plane 604. This
may provide additional security and prevent direct interface
of client and server networks by having appliance cluster 600
server as an intermediary device. In other embodiments, cli-
ent data plane 602 and server data plane 604 may be merged
or combined. For example, appliance cluster 600 may be
deployed as a non-intermediary node on a network with cli-
ents 102 and servers 106. As discussed above, in many
embodiments, an interface master may be deployed on the
server data plane 604, for routing and distributing communi-
cations from the servers and network 104' to each appliance of
the appliance cluster. In many embodiments, an interface
master for client data plane 602 and an interface master for
server data plane 604 may be similarly configured, perform-
ing ECMP or LAG protocols as discussed above.

In some embodiments, each appliance 200a-200% in appli-
ance cluster 600 may be connected via an internal communi-
cation network or back plane 606. Back plane 606 may com-
prise a communication network for inter-node or inter-
appliance control and configuration messages, and for inter-

20

25

40

45

54

node forwarding of traffic. For example, in one embodiment
in which a first appliance 200a communicates with a client via
network 104, and a second appliance 2005 communicates
with a server via network 104', communications between the
client and server may flow from client to first appliance, from
first appliance to second appliance via back plane 606, and
from second appliance to server, and vice versa. In other
embodiments, back plane 606 may carry configuration mes-
sages, such as interface pause or reset commands; policy
updates such as filtering or compression policies; status mes-
sages such as buffer status, throughput, or error messages; or
any other type and form of inter-node communication. In
some embodiments, RSS keys or hash keys may be shared by
all nodes in the cluster, and may be communicated via back
plane 606. For example, a first node or master node may select
an RSS key, such as at startup or boot, and may distribute this
key for use by other nodes. In some embodiments, back plane
606 may comprise a network between network interfaces of
each appliance 200, and may comprise a router, switch, or
other network device (not illustrated). Thus, in some embodi-
ments and as discussed above, a router for client data plane
602 may be deployed between appliance cluster 600 and
network 104, a router for server data plane 604 may be
deployed between appliance cluster 600 and network 104,
and a router for back plane 606 may be deployed as part of
appliance cluster 600. Each router may connect to a different
network interface of each appliance 200. In other embodi-
ments, one or more planes 602-606 may be combined, or a
router or switch may be split into multiple LANs or VLANs to
connect to different interfaces of appliances 2004-2007 and
serve multiple routing functions simultaneously, to reduce
complexity or eliminate extra devices from the system.

In some embodiments, a control plane (not illustrated) may
communicate configuration and control traffic from an
administrator or user to the appliance cluster 600. In some
embodiments, the control plane may be a fourth physical
network, while in other embodiments, the control plane may
comprise a VPN, tunnel, or communication via one of planes
602-606. Thus, the control plane may, in some embodiments,
be considered a virtual communication plane. In other
embodiments, an administrator may provide configuration
and control through a separate interface, such as a serial
communication interface such as RS-232; a USB communi-
cation interface; or any other type and form of communica-
tion. In some embodiments, an appliance 200 may comprise
an interface for administration, such as a front panel with
buttons and a display; a web server for configuration via
network 104, 104' or back plane 606; or any other type and
form of interface.

In some embodiments, as discussed above, appliance clus-
ter 600 may include internal flow distribution. For example,
this may be done to allow nodes to join/leave transparently to
external devices. To prevent an external flow distributor from
needing to be repeatedly reconfigured on such changes, a
node or appliance may act as an interface master or distributor
for steering network packets to the correct node within the
cluster 600. For example, in some embodiments, when a node
leaves the cluster (such as on failure, reset, or similar cases),
an external ECMP router may identify the change in nodes,
and may rehash all flows to redistribute traffic. This may
result in dropping and resetting all connections. The same
drop and reset may occur when the node rejoins. In some
embodiments, for reliability, two appliances or nodes within
appliance cluster 600 may receive communications from
external routers via connection mirroring.

In many embodiments, flow distribution among nodes of
appliance cluster 600 may use any of the methods discussed

US 9,065,854 B2

55

above for flow distribution among cores of an appliance. For
example, in one embodiment, a master appliance, master
node, or interface master, may compute a RSS hash, such as
a Toeplitz hash on incoming traffic and consult a preference
list or distribution table for the hash. In many embodiments,
the flow distributor may provide the hash to the recipient
appliance when forwarding the traffic. This may eliminate the
need for the node to recompute the hash for flow distribution
to a core. In many such embodiments, the RSS key used for
calculating hashes for distribution among the appliances may
comprise the same key as that used for calculating hashes for
distribution among the cores, which may be referred to as a
global RSS key, allowing for reuse of the calculated hash. In
some embodiments, the hash may be computed with input
tuples of transport layer headers including port numbers,
internet layer headers including IP addresses; or any other
packet header information. In some embodiments, packet
body information may be utilized for the hash. For example,
in one embodiment in which traffic of one protocol is encap-
sulated within traffic of another protocol, such as lossy UDP
traffic encapsulated via a lossless TCP header, the flow dis-
tributor may calculate the hash based on the headers of the
encapsulated protocol (e.g. UDP headers) rather than the
encapsulating protocol (e.g. TCP headers). Similarly, in some
embodiments in which packets are encapsulated and
encrypted or compressed, the flow distributor may calculate
the hash based on the headers of the payload packet after
decryption or decompression. In still other embodiments,
nodes may have internal IP addresses, such as for configura-
tion or administration purposes. Traffic to these IP addresses
need not be hashed and distributed, but rather may be for-
warded to the node owning the destination address. For
example, an appliance may have a web server or other server
running for configuration or administration purposes at an IP
address of 1.2.3.4, and, in some embodiments, may register
this address with the flow distributor as its internal IP address.
In other embodiments, the flow distributor may assign inter-
nal IP addresses to each node within the appliance cluster
600. Traffic arriving from external clients or servers, such as
a workstation used by an administrator, directed to the inter-
nal IP address of the appliance (1.2.3.4) may be forwarded
directly, without requiring hashing.
G. Systems and Methods for Managing a Virtual Machine
Executing within a Virtualized Environment

The systems and methods ofthe present solution illustrated
in FIGS. 7A-7B are directed to systems and methods for
managing a virtual machine executing within a virtualized
environment, such as the virtualized environment 400
depicted in FIG. 4A. In particular, a management service
virtual device can establish a daemon on a guest virtual
machine executing within a virtualized environment through
which the management service virtual device can communi-
cate with the guest virtual machine. In some implementa-
tions, the daemon can be configured to receive requests from
the management service virtual machine via an application
layer protocol. In some implementations, the application
layer protocol can be one of HTTP or HTTPS application
layer protocol. The requests can include one or more requests
identifying one or more action types from a plurality of pre-
determined action types. The daemon is configured to iden-
tify the action type identified by the received request and
perform an action corresponding to the identified action type.
Examples of various types of actions can include collecting
statistics from the guest virtual machine, overriding scripts
previously stored on the virtual machine, sharing logged data

10

15

20

25

30

35

40

45

50

55

60

65

56

with the management service virtual machine, upgrading or
downgrading software on the guest virtual machine, amongst
other types of actions.

Referring now to FIG. 7A, an embodiment of networking
in a virtualized environment 400 of an appliance 200 or
device 100 is depicted. The virtualized environment 400 may
comprise any embodiments of the virtualized environment
described herein, such as in connection with FIGS. 4A-4C. In
some embodiments, the virtualized environment may include
any embodiments of XenServer manufactured and/or pro-
vided by Citrix Systems, Inc. of Ft. Lauderdale, Fla. For
example, XenServer may be installed on a physical server 106
and may run multiple operating systems and virtual machines
(VM) 406a, 702 and 710a-7105. The virtualized environment
400, such as in XenServer, may have a special guest virtual
machine 406a referred to as Domain 0. This guest virtual
machine can include a control operating system 405, previ-
ously described in FIGS. 4A-4C, which may boot automati-
cally when the hypervisor 401 boots and receive special man-
agement privileges and direct access to all physical hardware
by default. The virtual machine 406a can be configured to
perform various other functions, including the functions of
one or more of the other virtual machines executing within the
virtualized environment 400. In some implementations, for
example as depicted in FIG. 7A, a management service vir-
tual machine 702 may be used to provide management and
provisioning of the virtualized environment 400 and any por-
tions thereof, such as the virtual machines 7104-7105. How-
ever, it should be understood that in some other implementa-
tions, the virtual machine 4064 may perform the same
functions as the management service virtual machine 702.

Similar to the virtual machines 406a-4067 described with
respect to FIGS. 4A-4C, the management service virtual
machine 702 can include an operating system 704, similar to
the operating system 410 described with respect to FIGS.
4A-4C. The operating system 704 of the management service
virtual machine 702 may execute at least one application 706
for managing the guest operating systems. The application
706 can be any type and/or form of software, program, or
executable instructions. The application may be implemented
or configured to enable communications between the man-
agement service virtual machine 702 and a guest virtual
machine 710 of the guest virtual machines 7104-7105 via an
application layer protocol 708 established between the man-
agement service virtual machine 702 and the guest virtual
machine 710.

One or more of the guest virtual machines 710 can be
configured to execute a daemon. The daemon can be any type
and/or form of software, program, or executable instructions
that can be deployed to the guest virtual machine 710 to
perform various functions. In some implementations, the dae-
mon may run unattended to perform continuous or periodic
system wide functions or to perform any desired task.

In some implementations, the daemon can be configured to
facilitate or provide for the onboarding of the guest virtual
machine 710 on the device 100. The daemon can also be
configured to perform certain functions without the need for
the guest virtual machine 710 to be accessed through an
administrator’s credentials. The daemon can be configured to
facilitate the upload and download of files by the guest virtual
machine 710. In some implementations, the daemon can
facilitate the upload and download of files by the guest virtual
machine 710 using secure shell (SSH) protocols, such as the
secure copy (SCP) or the Secure File Transfer Protocol
(SFTP). In some implementations, the daemon can facilitate
the upload and download of files by the guest virtual machine
710 using protocols other than the secure copy (SCP) or the

US 9,065,854 B2

57

Secure File Transfer Protocol (SFTP), for example, File
Transfer Protocol (FTP), amongst others. In some implemen-
tations, the daemon provides for the ability to be managed by
the management service virtual machine 702 without being
dependent on the release cycles of the guest machine 710 on
which the daemon is executing. In some implementations, the
daemon can be configured to respond only to requests
received from the management service virtual machine 702.

The daemon can be configured to receive instructions or
commands from the management service virtual machine 702
to manage network-related configurations for the guest vir-
tual machine 710, upgrade software executing on the virtual
machine, manage backup or restore configurations, generate
technical support, receive performance statistics (for
example, CPU and memory utilization, amongst others),
receive inventory details (for example, version and model
numbers of devices and components), manage the initial con-
figuration of the guest virtual machine 710 and manage or set
licenses in the guest virtual machine 710, amongst others.

The daemon can include one or more services 722, utilities
724 and scripts 726. The daemon can maintain a log 728 of
data processed by the guest virtual machine 710 on which the
daemon is executing. In some implementations, the daemon
can be configured to access the tools stack 404 already
deployed or installed on the guest virtual machine 710.

The daemon can be established on the guest virtual
machine 710 to provide an interface and application to the
management service virtual machine 702 to manage the guest
virtual machine 710. In some implementations, the daemon
can be established on the guest virtual machine 710 executing
in the virtualized environment by the hypervisor 401. In some
implementations, the daemon can be established by deploy-
ing a file corresponding to the daemon to the guest virtual
machine 710, configuring a port of the guest virtual machine
710 via which the management service virtual machine 702 is
to communicate with the daemon and creating a default secu-
rity certificate for receiving requests. Additional details of
how the daemon can be established on the guest virtual
machine 710 are provided below with respect to FIGS. 7B-71.

In some implementations, the daemon can be established
on the guest virtual machine 710 executing in the virtualized
environment by the hypervisor 401. In some implementa-
tions, the daemon can be established by deploying a file
corresponding to the daemon to the guest virtual machine
710, configuring a port of the guest virtual machine 710 via
which the management service virtual machine 702 is to
communicate with the daemon and creating a default security
certificate for receiving requests. Additional details of how
the daemon can be established on the guest virtual machine
710 are provided below with respect to FIGS. 7B-71.

The daemon can be configured to communicate with the
management service virtual machine 702 via an application
layer protocol. In some implementations, the daemon can be
configured to communicate with the management service
virtual machine 702 via a secure application layer protocol or
an application layer protocol via a secure session or tunnel. In
some implementations, the daemon can be configured to
respond to requests only from the management service virtual
machine 702. In some implementations, the application layer
protocol can be one of HTTP or HTTPS. As such, the daemon
may be configured to receive HTTP or HTTPS requests. In
some implementations, the received request includes a pay-
load having a portion in JavaScript Object Notation (JSON)
format. In some implementations, the received request
includes a payload having a portion in Extensible Markup
Language (XML), amongst other formats.

10

15

20

25

30

35

40

45

50

55

60

65

58

An example payload of a request received by the daemon
from the management service virtual machine 702 that
includes a portion in JSON format is provided herein. In some
implementations, the Payload between SVM and SDXTools
in JSON format

“sdx_tools_message": {
"action_type": "<ACTION_TYPE>",
"request_params”: {
"<PROP_NAME>": "<PROP_VAL>"

"response_params'’: {
"<PROP_NAME>": "<PROP_VAL>"
)

"error_code”: "<ERROR_CODE>",
"error_message": "<ERROR_MESSAGE>"

wherein action_type can be a predefined action type.

In some implementations, the daemon is configured to
identify an action type included within the request received
from the management service virtual machine 702. In some
implementations, the daemon is configured to only identify
one or more predefined action types. As such, the functional-
ity of the daemon may be limited to only being able to handle
certain requests that identify one or more of the action types.
In some implementations, the request can identify one of a
initialize network request, a get statistics request, an image
upgrade request or a do technical support request. Examples
of predefined action types include op_init_network; op_get-
_stat; op_image_upgrade; op_do_tech_support, amongst
others.

One action type is the op_init_network action type, which
corresponds to a request to initialize one or more network
configurations. The daemon, upon identifying this action type
is configured to perform one or more actions corresponding to
initializing one or more network configurations. In some
implementations, the daemon can utilize one or more ser-
vices, utilities or scripts to initialize one or more network
configurations.

Another action type is the op_get_stat action type, which
corresponds to a request for statistics. The request can cause
the daemon to perform one or more actions corresponding to
providing the management service virtual machine 702 sta-
tistics related to the performance of the guest virtual machine
710. In some implementations, one or more of the services
722, utilities 724 or scripts can monitor performance statistics
of the virtual machine. In some implementations, the moni-
tored statistics can be stored or collected in the log 728. In
some implementations, the daemon can be configured to
receive a request from the management service virtual
machine 702 to provide statistics. In some implementations,
the request can be directed towards a rest service running on
the guest virtual machine 710. The rest service can be one of
a plurality of services 722 that are a part of the daemon. In
some implementations, the request can include a request to
periodically receive statistics from the guest virtual machine
710. The rest service can be configured to collect statistics
regarding the guest virtual machine 710 and send a response
to the management service virtual machine 702. In some
implementations, the rest service may periodically send sta-
tistics to the management service virtual machine 702. The
frequency at which the rest service sends statistics to the
management service virtual machine 702 can depend on the
request from the management service virtual machine 702. In
some implementations, the management service virtual

US 9,065,854 B2

59

machine 702 can mark the guest virtual machine 710 as being
out of service if the management service virtual machine 702
is unable to reach the rest service or does not receive the
statistics from the rest service.

Another action type is the op_image_upgrade action type,
which is configured to cause the daemon to perform one or
more actions corresponding to upgrade an image of the guest
virtual machine 710. The op_do_tech_support action type is
configured to cause the daemon to perform one or more
actions corresponding to allow the management service vir-
tual machine 702 to provide technical support to the guest
virtual machine 710.

The request paramaters (request_params) and response
parameters (response_params) can have no properties or one
or more properties including a property name <PROP-
_NAME> and a property value <PROP_VAL>. In some
implementations, if the value of the error code is 0, the opera-
tion was performed successfully.

In some implementations, a request identifying an action
type corresponding to upgrading an image of the guest virtual
machine 710 can include an image file containing the image
to which to upgrade the image of the guest virtual machine
710. The request can be an HT'TP or HTTPS request in which
the image file can be included in the payload of the request. In
some implementations, the daemon can be configured to store
the image file in a folder containing images. In one imple-
mentation, the daemon can store the file in a directory corre-
sponding to “/var/opt/citrix/sdxtools/install/software_files/
images/”. If the daemon successfully upgrades the image of
the virtual machine using the received image, the daemon can
send a response back to the management service virtual
machine 702. The response can include a status code indicat-
ing that the image upgrade was successful. Conversely, if the
daemon was unable to successfully upgrade the image of the
virtual machine using the received image, the daemon can
send a response back to the management service virtual
machine 702 including a status code indicating that the image
upgrade was not successful.

In some implementations, the request to upgrade an image
file can include an upgrade message along with the image file.
The upgrade message of the request can include a status code
and a message parameter corresponding to the status code.
For example, the status code can be an error code having a
value of 0 and a message parameter having a value “Done.” In
such an example, if the image upgrade was successful, the
daemon can send a response back with errorcode having a
value of 0, indicating that the upgrade was successful.

In some implementations, the request to upgrade an image
of the virtual machine can be implemented as a script. An
example portion of a script is provided herein.

#$Header$

#$Author$

#

This script is to upgrade the image of guest VM
require “/var/opt/citrix/sdxtools/install/scripts/lin/utils.pl”;
$ENV{PATH}=
‘/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin’;
$ requestparams;

$responseparams;

process_request();

init_op_do_upgrade();

10

15

20

25

30

35

40

45

50

60

60

HHHHHHHRHHR B A

#TODO:

#Write code here to upgrade the image of VM.
#Image file is stored in

../ .. /.. /install/software_files/images/folder

HHHHHHHRHHR B A

process_response(“op_image_upgrade”, 0, “Done”);

The daemon can be configured to perform an action corre-
sponding to the action type identified in the request from the
management service virtual machine 702. Examples of vari-
ous types of actions can include collecting statistics from the
guest virtual machine 710, overriding scripts previously
stored on the virtual machine, sharing log data with the man-
agement service virtual machine 702, upgrading or down-
grading software on the guest virtual machine 710, amongst
other types of actions. In some implementations, the daemon
can utilize one or more services 722, utilities 724 or scripts
726 to perform one or more of these actions.

In some implementations, the daemon can perform an
action corresponding to the identified action type by calling a
script file corresponding to the action type identified by the
request and passing parameters included in the request to the
script file. In some implementations, the scripts 726 for the
operating system of the guest virtual machine can be in POW-
ERSHELIL if the operating system is a version of
MICROSOFT WINDOWS or PERL or PYTHON if the oper-
ating system is a version of UNIX. In some implementations,
the daemon 720 can utilize a service 722, such as a rest
service, to call a script file corresponding to the action type
identified in the request. The service 722 can pass the request
parameters to the script. The script can be configured to
execute using the request paramaters and generate an output.
The service 722 can use the output to form one or more
response parameters to send back to the management service
virtual machine. In some implementations, the daemon
parses the output of the script, generates a response and
provides the generated response to the management service
virtual machine. In some implementations, the script files can
be changed or overridden to suit the guest virtual machine as
long as the methods signature in the script files remains
unchanged. In this way, the script files can still be invoked
responsive to receiving a request from the management ser-
vice virtual machine 702 and can generate an output that can
be used to send a response back to the management service
virtual machine 702.

In some implementations, the management service virtual
machine 702 can be configured to include the daemon 720 as
well. In some implementations, the version of the daemon
running on the management service virtual machine 702 and
the guest virtual machine 710 can be the same or similar. In
some implementations, the management service virtual
machine 702 can be configured to upgrade or downgrade the
daemon 720 running on the guest virtual machine 710.

In some implementations, the daemon 720 maintains a log,
such as to facilitate debugging. In some implementations, the
daemon 720 can collect statistics regarding the performance
of the guest virtual machine 710 via one or more of the
services 722, utilities 724 or scripts 726. The daemon can be
configured to store the collected statistics in the log 728. The
log 728 can be stored to storage or in a memory accessible to

HHHHHHHH AR guest virtual machine 710. The log 728 can include infor-

Add VM specific code here.

mation relating to performance statistics of the guest virtual

HHHHHH AR AEHREChine 710, CPU and memory allocation of the guest virtual

sub init_op_do_upgrade

$upgrade_£ilename=$responseparams{“filename”};

65

machine 710, software upgrade history, amongst others.
FIGS. 7B-71 are a series of illustrations depicting a process
for deploying the daemon on the guest virtual machine 710.

US 9,065,854 B2

61

Referring now to FIG. 7B, the first step for deploying the
daemon is to provision a guest virtual machine 710. In some
implementations, the virtual machine can be a SECUREMA.-
TRIX GSB (SMX-GSB) virtual machine. SECUREMA-
TRIX GSB provides a highly secure password system that
eliminates the need to carry any token devices. An instance of
the SECUREMATRIX GSB virtual machine can be provi-
sioned, monitored, managed and troubleshooted from the
management service virtual machine 702. In some imple-
mentations, an instance of the guest virtual machine 710 can
be provisioned from a graphical user interface for managing
the hypervisor 401. In some implementations, the guest vir-
tual machine 710 can be provisioned in a format, for example,
XVA, that is specific to the hypervisor, for example, Xen-
Server, for packaging a single guest virtual machine 710 as a
single file archive of a descriptor and disk images.

Referring now to FIG. 7C, upon provisioning the guest
virtual machine 710, the guest virtual machine 710 can be
made reachable to the network by editing a script. For
example, the IP address, gateway and netmask may be con-
figured according to the network the device is attached or
connected to or in communication with. In some implemen-
tations, the script file located at /etc/sysconfig/network-
scripts/ifcfg-ethO is edited to provide a network configura-
tion.

Referring now to FIG. 7D, a software construct or package
including high performance operating system drivers and a
management agent that can enhance disk and network per-
formance of a virtual machine is then installed, if it hasn’t
previously been installed, on the guest virtual machine 710.
As shown in FIG. 7D, a user interface indicating the virtual
machines running on the hypervisor for example, XenServer,
on which the guest virtual machine is running. Virtual
machines in which the software package is installed and
running can provide memory usage information, disk and
network information, amongst others. Virtual machines in
which the software package is not installed or is out of date
may be unable to provide memory usage, disk and network
information, and as such, the user interface is unable to pro-
vide memory usage, disk and network information for such
virtual machines. In some implementations, the software
package can be XenServer Tools for Citrix.

Referring now to FIG. 7E, a directory may be created for
installing tools, such as sdxtools. In some implementations,
upon installing the software package, a secure connection to
the guest virtual machine 710 is made and a directory in
which to store the daemon is created. The daemon can then be
transmitted to the directory via an SCP/SFTP file transfer. In
some implementations, the daemon can be formatted to be
included in a formatted file, for example, a .tar file, and
delivered to the directory, where the formatted file is saved.

Referring now to FIG. 7F, the formatted file including the
daemon can be extracted and installed. In addition, a port on
which the management service virtual machine 702 will com-
municate with the guest virtual machine 710 is identified and
a default security certificate may be created. The default
security certificate can be a Secure Sockets Layer (SSL)
certificate to enable communication via HTTPS. Moreover,
the daemon can be initiated upon installing the file.

Referring now to FIG. 7G, in some embodiments, one or
more scripts that need to be overridden may be placed in a
directory to access the scripts in the future. For example, as
shown in FIG. 7G, a directory named “custom_scripts” is
created in which scripts that need to be overridden can be
installed.

Referring now to FIG. 7H, once the previous steps are
successfully completed, the guest virtual machine 710 can be

20

25

30

40

45

50

65

62

converted to a template to create additional guest virtual
machines that include the daemon. As shown in FIG. 7H, a
user interface through which the hypervisor, for example, the
XenServer, can be accessed can allow an administrator to
perform various functions on one or more of the virtual
machines running on the hypervisor. As shown in FIG. 7H, an
administrator can shut down, suspend, reboot, force shut-
down or force reboot one or more of the virtual machines. In
some implementations, while a virtual machine is not run-
ning, the administrator, via the user interface, can start a
virtual machine, take a snapshot of the virtual machine, con-
vert the virtual machine to a template, delete the virtual
machine, amongst others. In some implementations, the
administrator, via the user interface, can start a new virtual
machine wizard for setting up a new virtual machine, can
export a template of a virtual machine to a file, such as an
XVA file, or delete a template. The exported template file can
be used to create one or more new virtual machines on the
hypervisor.

Referring now to FIG. 71, the guest virtual machine 710
including the daemon can be provisioned on the management
service virtual machine 710. In some implementations, an
administrator can provision the guest virtual machine on the
hypervisor via the user interface. The administrator can
access the guest virtual machine through the user interface. If
the software package, for example, SDXTools described in
FIG. 7D is installed, the user interface can indicate that the
software package is installed, for example, by indicating a
green icon. If the software package is not installed, the user
interface can indicate that the software package is not
installed, for example, by indicating ared icon. Ifthe software
package is installed but the daemon of the guest virtual
machine is not responding, the user interface can indicate this,
for example, by indicating a yellow icon representing that the
guest virtual machine is out of service.

Referring now to FIG. 7], an embodiment of a method for
managing a virtual machine executing within a virtualized
environment is depicted. A daemon is established on a guest
virtual machine (step 740). The daemon then receives a
request identifying an action type (step 745). The daemon
identifies an action type from the request (step 750) and
performs an action corresponding to the identified action type
is performed (step 755).

In further details, a daemon is established on a guest virtual
machine executing within a virtualized environment (step
740). The daemon can be configured to communicate with a
management service virtual machine executing within the
virtualized environment. In some implementations, a virtual-
ized environment may be established or deployed ona device,
such as any embodiments of an intermediary device of the
appliance 200 described herein. The virtualized environment
may include any embodiments of the virtualized environment
described in connection with FIGS. 4A-4C. In some embodi-
ments, the virtualized environment may be established on a
single processor appliance. In some embodiments, the virtu-
alized environment may be established on a multi-processor
appliance. In some embodiments, the virtualized environ-
ment may be established on a multi-core appliance. Each
virtual machine may execute on a corresponding core of the
plurality cores of the multi-core device.

In establishing the virtualized environment, the virtualized
environment may have a special guest or domain 0 virtual
machine. The virtualized environment may execute or oper-
ate a plurality of virtual machines. One or more of these
virtual machines may provide any embodiments of an appli-
cation delivery controller or packet processing engine
described herein. In some embodiments, a device intermedi-

US 9,065,854 B2

63

ary to a plurality of clients and a plurality of severs, executes
each virtual machine as one of a virtualized packet processing
engine or a virtualized application delivery controller. In
some implementations, a daemon can be established on a
guest virtual machine executing within the virtual environ-
ment by deploying a file corresponding to the daemon, con-
figuring a port of the guest virtual machine via which the
management service virtual machine can communicate with
the daemon and creating a default security certificate for
receiving requests. In some implementations, the manage-
ment service virtual machine can deploy the daemon to the
guest virtual machine. In some implementations, the manage-
ment service virtual machine can configure a port of the guest
virtual machine via which the management service virtual
machine can communicate with the daemon.

The daemon then receives a request identifying an action
type (step 745). In some implementations, the daemon
receives the request from the management service virtual
machine. In some implementations, responsive to receiving
the request, the daemon can determine that the received
request is received from the management service virtual
machine. The received request can be received from the man-
agement service virtual machine via an application layer pro-
tocol. The received request can be one of an HTTP or an
HTTPS request. In some implementations, the received
request can include a payload having a portion in JSON
format.

The daemon identifies an action type from the request (step
750). In some implementations, the request can identify one
or more of a initialize network request, a get status request, an
image upgrade request or a do technical support request. In
some implementations, the request can include an image file
and a predetermined instruction corresponding to an image
upgrade request to upgrade to the image file included in the
received request. In some implementations, the request can
include instructions to execute a script corresponding to an
action of the plurality of predetermined action types. The
daemon performs an action corresponding to the identified
action type (step 755).

The daemon can perform an action corresponding to the
action type identified in the request from the management
service virtual machine. Examples of various types of actions
can include collecting statistics from the guest virtual
machine and providing the collected statistics to the manage-
ment service virtual machine, overriding scripts previously
executing on the virtual machine, sharing log data with the
management service virtual machine, upgrading or down-
grading software on the guest virtual machine, amongst other
types of actions. In some implementations, the daemon can
utilize one or more services, utilities or scripts 726 to perform
one or more of these actions.

In some implementations, the daemon can perform an
action corresponding to the identified action type by calling a
script file corresponding to the action type identified by the
request and passing parameters included in the request to the
script file. In some implementations, the daemon can parse an
output generated by the script file, generate a response and
provide the generated response to the management service
virtual machine. In some implementations, the daemon can
maintain a log to facilitate debugging. In some implementa-
tions, the daemon can collect statistics regarding the perfor-
mance of the guest virtual machine via one or more of the
services, utilities or scripts. The daemon can store the col-
lected statistics in the log. The log can include performance
related data and statistics of the guest virtual machine, includ-
ing but not limited to information relating to performance
statistics of the guest virtual machine, CPU and memory

10

15

20

25

30

40

45

50

55

60

65

64

allocation of the guest virtual machine, software upgrade
history, amongst others. The daemon can share this informa-
tion with the management service virtual machine. It can
further use this information to identify errors or bugs in the
guest virtual machine and address the identified errors or
bugs. In some implementations, one or more of the services
utilities or scripts can be configured to debug the guest virtual
machine. In some implementations, the guest virtual machine
can receive a request from the management service virtual
machine to debug the virtual machine.
It should be understood that the systems described above
may provide multiple ones of any or each of those compo-
nents and these components may be provided on either a
standalone machine or, in some embodiments, on multiple
machines in a distributed system. The systems and methods
described above may be implemented as a method, apparatus
or article of manufacture using programming and/or engi-
neering techniques to produce software, firmware, hardware,
or any combination thereof. In addition, the systems and
methods described above may be provided as one or more
computer-readable programs embodied on or in one or more
articles of manufacture. The term “article of manufacture” as
used herein is intended to encompass code or logic accessible
from and embedded in one or more computer-readable
devices, firmware, programmable logic, memory devices
(e.g., EEPROMs, ROMs, PROMs, RAMs, SRAMs, etc.),
hardware (e.g., integrated circuit chip, Field Programmable
Gate Array (FPGA), Application Specific Integrated Circuit
(ASIC), etc.), electronic devices, a computer readable non-
volatile storage unit (e.g., CD-ROM, floppy disk, hard disk
drive, etc.). The article of manufacture may be accessible
from a file server providing access to the computer-readable
programs via a network transmission line, wireless transmis-
sion media, signals propagating through space, radio waves,
infrared signals, etc. The article of manufacture may be a flash
memory card or a magnetic tape. The article of manufacture
includes hardware logic as well as software or programmable
code embedded in a computer readable medium that is
executed by a processor. In general, the computer-readable
programs may be implemented in any programming lan-
guage, such as LISP, PERL, C, C++, C#, PROLOG;, or in any
byte code language such as JAVA. The software programs
may be stored on or in one or more articles of manufacture as
object code.
While various embodiments of the methods and systems
have been described, these embodiments are exemplary and
in no way limit the scope of the described methods or systems.
Those having skill in the relevant art can effect changes to
form and details of the described methods and systems with-
out departing from the broadest scope of the described meth-
ods and systems. Thus, the scope of the methods and systems
described herein should not be limited by any of the exem-
plary embodiments and should be defined in accordance with
the accompanying claims and their equivalents.
What is claimed is:
1. A method of managing a guest virtual machine executing
within a virtualized environment, the method comprising:
establishing a daemon on a guest virtual machine executing
within a virtualized environment, the daemon config-
ured to communicate with a management service virtual
machine executing within the virtualized environment;

configuring a port of the guest virtual machine via which
the management service virtual machine is to commu-
nicate with the daemon;

creating a default security certificate,

wherein the security certificate enables communications
via an application layer protocol;

US 9,065,854 B2

65

receiving, by the daemon from the management service
virtual machine via the application layer protocol, a
request identifying an action type of a plurality of pre-
determined action types;

identifying, by the daemon, from the received request, the

action type of the plurality of predetermined action
types; and

performing, by the daemon, an action corresponding to the

identified action type.

2. The method of claim 1, further comprising determining,
by the daemon, that the received request is received from the
management service virtual machine.

3. The method of claim 1, wherein the application layer
protocol is one of Hypertext Transfer Protocol (HTTP) or
Hypertext Transfer Protocol Secure (HTTPS).

4. The method of claim 1, wherein the received request
comprises a payload having a portion in JavaScript Object
Notation (JSON) format.

5. The method of claim 1, wherein receiving a request
identifying an action type of a plurality of predetermined
action types includes a request identifying one of a initialize
network request, a get statistics request, an image upgrade
request or a do technical support request.

6. The method of claim 1, wherein receiving a request
identifying an action type of a plurality of predetermined
action types includes receiving a request that includes an
image file and a predetermined instruction corresponding to
an image upgrade request to upgrade to the image file
included in the received request.

7. The method of claim 1, wherein receiving a request
identifying an action type of a plurality of predetermined
action types includes receiving a request that includes instruc-
tions to execute a script corresponding to an action of the
plurality of predetermined action types.

8. The method of claim 1, wherein performing an action
corresponding to the identified action type comprises:

calling, by the daemon, a script file corresponding to the

action type identified by the request; and

passing parameters included in the request to the script file.

9. The method of claim 8, further comprising:

parsing an output of the script;

generating a response; and

providing the generated response to the management ser-

vice virtual machine.

10. The method of claim 1, further comprising maintain-
ing, by the daemon, a log to facilitate debugging.

11. A system for managing a guest virtual machine execut-
ing within a a guest virtual machine executing within a vir-
tualized environment comprising:

10

15

20

25

30

35

40

66

a guest virtual machine executing by the hardware proces-
sor of the system and configured to establish a port of the
guest virtual machine via which the management service
virtual machine is to communicate with a daemon and
create a default security certificate,
wherein the security certificate enables communications

via an application layer protocol;

the daemon configured to execute on the guest virtual
machine and communicate with a management service
virtual machine executing within the virtualized envi-
ronment, wherein the daemon is configured to
receive, from the management service virtual machine

via the application layer protocol, a request identify-
ing an action type of a plurality of predetermined
action types;
identify, from the received request, the action type of the
plurality of predetermined action types; and
perform an action corresponding to the identified action
type.

12. The system of claim 11, wherein the application layer
protocol is one of Hypertext Transfer Protocol (HTTP) or
Hypertext Transfer Protocol Secure (HTTPS).

13. The system of claim 11, wherein receiving a request
identifying an action type of a plurality of predetermined
action types includes a request identifying one of a initialize
network request, a get statistics request, an image upgrade
request or a do technical support request.

14. The system of claim 11, wherein receiving a request
identifying an action type of a plurality of predetermined
action types includes receiving a request that includes an
image file and a predetermined instruction corresponding to
an image upgrade request to upgrade to the image file
included in the received request.

15. The system of claim 11, wherein receiving a request
identifying an action type of a plurality of predetermined
action types includes receiving a request that includes instruc-
tions to execute a script corresponding to an action of the
plurality of predetermined action types.

16. The system of claim 11, wherein the daemon is further
configured to:

call a script file corresponding to the action type identified
by the request; and

pass parameters included in the request to the script file.

17. The system of claim 15, wherein the daemon is further
configured to:

parse an output of the script;

generate a response; and

provide the generated response to the management service
virtual machine.

